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1 Introduction

A family of (not necessarily infinitely many) non-overlapping congruent balls in d-dimensional space of
constant curvature is called a packing of congruent balls in the given d-space that is either in the Euclidean
d-space E

d or in the spherical d-space S
d or in the hyperbolic d-space H

d. The goal of this report is to give
a state of the art description of d-dimensional sphere packings. On the one hand, the research on sphere
packings seems to be one of the most active areas of (discrete) geometry on the other hand, it is one of the
oldest areas of mathematics ever studied. The topics discussed in separate sections of this report are the
following ones:

- Hadwiger numbers of convex bodies and kissing numbers of spheres;
- Touching numbers of convex bodies;
- Newton numbers of convex bodies;
- One-sided Hadwiger and kissing numbers;
- Contact graphs of finite packings and the combinatorial Kepler problem;
- Isoperimetric problems for Voronoi cells, the strong dodecahedral conjecture and the truncated octahe-

dral conjecture;
- The strong Kepler conjecture;
- Bounds on the density of sphere packings in higher dimensions;
- Solidity and uniform stability.
Each section outlines the state of the art of relevant research along with some of the ”most wanted” re-

search problems. Generally speaking the material covered belongs to combinatorics, convexity and discrete
geometry however, often the methods indicated cover a much broader spectrum of mathematics includ-
ing computational geometry, hyperbolic geometry, the geometry of Banach spaces, coding theory, convex
analysis, geometric measure theory, (geometric) rigidity, topology, linear programming and non-linear opti-
mization.

2 Hadwiger numbers of convex bodies and kissing numbers of

spheres

Let K be a convex body (i.e. a compact convex set with nonempty interior) in d-dimensional Euclidean
space E

d, d ≥ 2. Then the Hadwiger number H(K) of K is the largest number of non-overlapping translates
of K that can all touch K. An elegant observation of Hadwiger [49] is the following.
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Theorem 2.1 For every d-dimensional convex body K,

H(K) ≤ 3d − 1,

where equality holds if and only if K is an affine d-cube.

On the other hand, in another elegent paper Swinnerton-Dyer [84] proved the following lower bound for
Hadwiger numbers of convex bodies.

Theorem 2.2 For every d-dimensional (d ≥ 2)convex body K,

d2 + d ≤ H(K).

Actually, finding a better lower bound for Hadwiger numbers of d-dimensional convex bodies is a highly
challanging open problem for all d ≥ 4. (It is not hard to see that the above theorem of Swinnerton-Dyer is
sharp for dimensions 2 and 3.) The best lower bound known in dimensions d ≥ 4 is due to Talata [85], who
applying Dvoretzky’s theorem on spherical sections of centrally symmetric convex bodies succeded to show
the following inequality.

Theorem 2.3 There exists an absolute constant c > 0 such that

2cd ≤ H(K)

holds for every positive integer d and for every d-dimensional convex body K.

Now, if we look at convex bodies different from a Euclidean ball in dimensions larger than 2, then our
understanding of their Hadwiger numbers is very limited. Namely, we know the Hadwiger numbers of the
following convex bodies different from a ball. The result for tetrahedra is due to Talata [86] and the rest
was proved by Larman and Zong [60].

Theorem 2.4 The Hadwiger numbers of tetrahedra, octahedra and rhombic dodecahedra are all equal to 18.

In order to gain some more insight on Hadwiger numbers it is natural to pose the following question.

Problem 2.5 For what integers k with 12 ≤ k ≤ 26 does there exist a 3-dimensional convex body with
Hadwiger number k? What is the Hadwiger number of a d−dimensional simplex (resp., crosspolytope) for
d ≥ 4?

The second main problem in this section is fondly known as the kissing number problem. The kissing
number τd is the maximum number of nonoverlapping d-dimensional balls of equal size that can touch a
congruent one in E

d. In three dimension this question was the subject of a famous discussion between Isaac
Newton and David Gregory in 1964. So, it is not surprising that the literature on the kissing number problem
is ”huge”. Perhaps the best source of information on this problem is the book [35] of Conway and Sloane.
In what follows we give a short description of the present status of this problem.

τ2 = 6 is trivial. However, determining the value of τ3 is not a trivial issue. Actually the first complete
and correct proof of τ3 = 12 was given by Schütte and van der Waerden [82] in 1953. The subsequent (two
pages) often cited proof of Leech [61], which is impressively short, contrary to the common belief does contain
some gaps. It can be completed though, see for example, [66]. Further more recent proofs can be found in
[29], [1] and in [72]. None of these are short proofs either and one may wonder whether there exists a proof
of τ3 = 12 in THE BOOK at all. (For more information on this see the very visual paper [32].) Thus, we
have the following theorem.

Theorem 2.6 τ2 = 6 and τ3 = 12.

The race for finding out the kissing numbers of Euclidean balls of dimension larger than 3 was always and
is even today one of the most visible research projects of mathematics. Following the chronological ordering,
here are the major inputs. Coxeter [36] conjectured and Böröczky [27] proved the following theorem, where

Fd(α) = 2dU
d!ωd

is the Schläfli function with U standing for the spherical volume of a regular spherical (d− 1)-
dimensional simplex of dihedral angle 2α and with ωd denoting the surface volume of the d-dimensional unit
ball.
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Theorem 2.7 τd ≤ 2Fd−1(β)
Fd(β) , where β = 1

2arcsec d.

It was another breakthrough when Delsarte’s linear programming method (for details see for example
[77]) was applied to the kissing number problem and so, when Kabatiansky and Levenshtein [59] succeded to
improve the upper bound of the previous theorem for large d as follows. The lower bound mentioned below
was found by Wyner [87] several years earlier.

Theorem 2.8 20.2075d(1+o(1)) ≤ τd ≤ 20.401d(1+o(1)).

As the gap between the lower and upper bounds is exponential it was a great surprise when Levenshtein
[61] and Odlyzko and Sloane [75] independently found the following exact values for τd.

Theorem 2.9 τ8 = 240 and τ24 = 196560.

In addition, Bannai and Sloane [3] were able to prove the following.

Theorem 2.10 There is a unique way (up to isometry) of arranging 240 (resp., 196560) nonoverlapping
unit spheres in 8-dimensional (resp., 24-dimensional) Euclidean space such that they touch another unit
sphere.

The latest surprise came when Musin [70], [71] extending Delsarte’s method found the kissing number of
4-dimensional Euclidean balls. Thus, we have

Theorem 2.11 τ4 = 24.

In connection with Musin’s result we believe in the following conjecture.

Conjecture 2.12 There is a unique way (up to isometry) of arranging 24 nonoverlapping unit spheres in
4-dimensional Euclidean space such that they touch another unit sphere.

Using the spherical analogue of the technique devoloped in [11] K. Bezdek [22] gave a proof of the following
theorem that one can regard as the local version of the above conjecture.

Theorem 2.13 Take a unit ball B of E
4 touched by 24 other (nonoverlapping) unit balls B1,B2, . . . ,B24

with centers C1, C2, . . . , C24 such that the centers C1, C2, . . . , C24 form the vertices of a regular 24-cell {3, 4, 3}
in E

4. Then there exists an ε > 0 with the following property: if the nonoverlapping unit balls B′
1,B

′
2, . . . ,B

′
24

with centers C ′
1, C

′
2, . . . , C

′
24 are chosen such that B′

1,B
′
2, . . . ,B

′
24 are all tangent to B in E

4 and for each
i, 1 ≤ i ≤ 24 the Euclidean distance between Ci and C ′

i is at most ε, then C ′
1, C

′
2, . . . , C

′
24 form the vertices

of a regular 24-cell {3, 4, 3} in E
4.

There is a great list of record kissing numbers in dimensions from 32 to 128 in [74] and also, we refer the
interested reader to the paper [39] of Edel, Rains and Sloane for some amazingly elementary but efficient
constructions.

3 Touching numbers of convex bodies

The touching number t(K) of a convex body K in d-dimensional Euclidean space E
d is the largest possible

number of mutually touching translates of K lying in E
d. The elegant paper [37] of Danzer and Grünbaum

gives a proof of the following fundamental inequality. In fact, this inequality was phrased by Petty [76] as
well as by P. S. Soltan [83] in another equivalent form saying that the cardinality of an equilateral set in any
d-dimensional normed space is at most 2d.

Theorem 3.1 For an arbitrary convex body K of E
d

t(K) ≤ 2d

with equality if and only if K is an affine d-cube.
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In connection with the above inequality K. Bezdek and Pach [15] conjecture the following even stronger
result.

Conjecture 3.2 For any convex body K in E
d, d ≥ 3 the maximum number of pairwise tangent positively

homothetic copies of K is not more than 2d.

This problem is still quite open. It seems that the only published upper bound is 3d − 1 in [15].
It is natural to ask for a non-trivial lower bound for t(K). Brass [30] as an application of Dvoretzky’s

well-known theorem gave a partial answer for the existence of such a lower bound.

Theorem 3.3 For each k there exists a d(k) such that for any convex body K of E
d with d ≥ d(k)

k ≤ t(K).

It is remarkable that the natural sounding conjecture of Petty [76] stated next is still open for all d ≥ 4.

Conjecture 3.4 For each convex body K of E
d, d ≥ 4

d + 1 ≤ t(K).

A generalization of the concept of touching numbers was introduced by K. Bezdek, M. Naszódi and B.
Visy [19] as follows. The mth touching number (or the mth Petty number) t(m,K) of a convex body K of
E

d is the largest cardinality of (possibly overlapping) translates of K in E
d such that among any m translates

always there are two touching ones. Note that t(2,K) = t(K). The following theorem proved by K. Bezdek,
M. Naszódi and B. Visy [19] states some upper bounds for t(m,K).

Theorem 3.5 Let t(K) be an arbitrary convex body in E
d. Then

t(m,K) ≤ min
{
(m − 1)4d,

(
2d + m − 1

2d

)}

holds for all m ≥ 2, d ≥ 2. Also, we have the inequalities

t(3,K) ≤ 2 · 3d, t(m,K) ≤ (m − 1)[(m − 1)3d − (m − 2)]

for all m ≥ 4, d ≥ 2. Moreover, if Bd (resp., Cd) denotes a d-dimensional ball (resp., d-dimensional affine
cube) of E

d, then
t(2,Bd) = d + 1, t(m,Bd) ≤ (m − 1)3d, t(m,Cd) = (m − 1)2d

hold for all m ≥ 2, d ≥ 2.

We cannot resist on raising the following question (for more details see [19]).

Problem 3.6 Prove or disprove that if K is an arbitrary convex body in E
d with d ≥ 2 and m > 2, then

(m − 1)(d + 1) ≤ t(m,K) ≤ (m − 1)2d.

4 Newton numbers of convex bodies

According to L. Fejes Tóth [44] the Newton number N(K) of a convex body K in E
d is defined as the largest

number of congruent copies of K that can touch K without having interior points in common. (Note that
unlike in the case of Hadwiger numbers here it is not necessary at all to use translated copies of the given
convex body. In fact, often it is better to use rotated or reflected ones.) For the special case when K is a
ball we refer the reader to Section 2 of this paper. Here we focus on the case when K is different from a
ball. Somewhat surprisingly, in this case only planar results are known. Namely, Linhart [65] and Böröczky
[26] determined the Newton numbers of regular convex polygons.
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Theorem 4.1 If N(n) denotes the Newton number of a regular convex n-gon in E
2, then

N(3) = 12, N(4) = 8 and N(n) = 6 for all n ≥ 5.

L. Fejes Tóth [42] proved the following - in some cases quite sharp - upper bound for the Newton numbers
of convex domains (i.e. compact convex sets with nonempty interior) in E

2.

Theorem 4.2 A convex domain with diameter D and minimum width W cannot be touched by more than

[
(4 + 2π)

D

W
+ 2 +

W

D

]

non-overlapping congruent copies of it.

This result was improved by Schopp [81] as follows.

Theorem 4.3 The Newton number of any convex domain of constant width in E
2 is at most 7 and the

Newton number of a Reuleaux triangle is exactly 7.

We close this section with a rather natural question, which to the best of our knowledge has not been
yet studied.

Problem 4.4 Prove or disprove that the Newton number of a d-dimensional (d ≥ 3) Euclidean cube is
3d − 1.

5 One-sided Hadwiger and kissing numbers

K. Bezdek and P. Brass [20] assigned to each convex body K in E
d a specific positive integer called the

one-sided Hadwiger number h(K) as follows: h(K) is the largest number of non-overlapping translates of K
that touch K and that all lie in a closed supporting half-space of K. In [20], using the Brunn-Minkowski
inequality, K. Bezdek and P. Brass proved the following sharp upper bound for the one-sided Hadwiger
numbers of convex bodies.

Theorem 5.1 If K is an arbitrary convex body in E
d, then

h(K) ≤ 2 · 3d−1 − 1.

Moreover, equality is attained if and only if K is a d-dimensional affine cube.

The notion of one-sided Hadwiger numbers was introduced to study the (discrete) geometry of the so-
called k+-neighbour packings, which are packings of translates of a given convex body in E

d with the property
that each packing element is touched by at least k others from the packing, where k is a given positive integer.
As this area of discrete geometry has a rather large literature we refer the interested reader to [20] for a brief
survey on the relevant results. Here, we emphasize the following corollary of the previous theorem proved
also in [20].

Theorem 5.2 If K is an arbitrary convex body in E
d, then any k+-neighbour packing by translates of K

with k ≥ 2 · 3d−1 must have a positive density in E
d. Moreover, there is a (2 · 3d−1 − 1)+-neighbour packing

by translates of a d-dimensional affine cube with density 0 in E
d.

It is obvious that the one-sided Hadwiger number of any circular disk in E
2 is 4. However, the 3-

dimensional analogue statement is harder to get. As it turns out the one-sided Hadwiger number of the
3-dimensional Euclidean ball is 9. One of the shortest proofs of this fact was found by A. Bezdek and K.
Bezdek [10]. Since here we are studying Euclidean balls their one-sided Hadwiger numbers we simply call
one-sided kissing numbers.

Theorem 5.3 The one-sided kissing number of the 3-dimensional Euclidean ball is 9.
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As we have mentioned before Musin [71] has just announced a proof of the long-standing conjecture that
the kissing number of the 4-dimensional Euclidean ball is 24. Based on this result K. Bezdek [22] gave a
proof of the following.

Theorem 5.4 The one-sided kissing number of the 4-dimensional Euclidean ball is either 18 or 19.

The proof of the above theorem supports the following conjecture.

Conjecture 5.5 The one-sided kissing number of the 4-dimensional Euclidean ball is 18.

6 Contact graphs of finite packings and the combinatorial Kepler

problem

Let K be an arbitrary convex body in E
d. Then the contact graph of an arbitrary finite packing by non-

overlapping translates of K in E
d is the (simple) graph whose vertices correspond to the packing elements

and whose two vertices are connected by an edge if and only if the corresponding two packing elements touch
each other. One of the most basic questions on contact graphs is to find out the maximum number of edges
that a contact graph of n translates of the given convex body K can have in E

d. Harborth [55] proved the
following remarkable result on the contact graphs of congruent circular disk packings in E

2.

Theorem 6.1 The maximum number of touching pairs in a packing of n congruent circular disks in E
2 is

precisely
b3n−

√
12n− 3c.

In a very recent paper [31] Brass extended the above result to the ”unit circular disk packings” of normed
planes as follows.

Theorem 6.2 The maximum number of touching pairs in a packing of n translates of a convex domain K
in E

2 is b3n −
√

12n− 3c, if K is not a parallelogram, and b4n−
√

28n− 12c, if K is a parallelogram.

The analogue question in the hyperbolic plane has been studied by Bowen in [23]. We prefer to quote
his result in the following geometric way.

Theorem 6.3 Consider circle packings in the hyperbolic plane, by finitely many congruent circles, which
maximize the number of touching pairs for the given number of congruent circles. Then such a packing must
have all of its centers located on the vertices of a triangulation of the hyperbolic plane by congruent equilateral
triangles, provided the diameter D of the circles is such that an equilateral triangle in the hyperbolic plane
of side length D has each of its angles equal to 2π

N
for some N > 6.

It is not hard to see that one can extend the above result to S
2 exactly in the way as the above phrasing

suggests. However, we get a more general approach if we do the following: Take n non-overlapping unit
diameter balls in a convex position in E

3, that is assume that there exists a 3-dimensional convex polyhedron
whose vertices are center points moreover, each center point belongs to the boundary of that convex poly-
hedron, where n ≥ 4 is a given integer. Obviously, the shortest distance among the center points is at least
one. Then count the unit distances showing up between pairs of center points but, count only those pairs
that generate a unit line segment on the boundary of the given 3-dimensional convex polyhedron. Finally,
maximize this number for the given n and label this maximum by c(n). The following theorem was found by
D. Bezdek [12] who also pointed out its interesting relation to protein folding as well as to Dürer’s unsolved
geometric problem on edge-unfolding of convex polyhedra. He calls the convex polyhedra showing up in the
theorem below ”higher order deltahedra” mainly because they form an extension of ”deltahedra” classified
earlier by Freudenthal and van der Waerden in [47].

Theorem 6.4 c(n) ≤ 3n − 6, where equality is attained for infinitely many n namely, for those for which
there exists a 3-dimensional convex polyhedron whose each face is an edge-to-edge union of some regular
triangles of side length one such that the total number of generating regular triangles on the boundary of
the convex polyhedron is precisely 2n − 4 with a total number of 3n − 6 sides of length one and with a total
number of n vertices.
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Now, we are ready to phrase the Combinatorial Kepler Problem. As its name suggests this problem
is strongly related to the Kepler Conjecture on the densest unit sphere packings in E

3 (for more details see
Section 7 of this paper).

Problem 6.5 For a given n find the largest number K(n) of touching pairs in a packing of n congruent
balls in E

3.

This problem is quite open. The first part of the following theorem was proved by D. Bezdek [12] the
second part by K. Bezdek [22].

Theorem 6.6

(i) K(4) = 6, K(5) = 9, K(6) = 12 and K(7) = 15.

(ii) K(n) < 6n − 0.59n
2
3 for all n ≥ 4.

We close this section with two upper bounds for the number of touching pairs in an arbitrary finite
packing of translates of a convex body, proved by K. Bezdek in [18] . In order to state these theorems in
a short way we need a bit of notation. Let K be an arbitrary convex body in E

d, d ≥ 3. Then let δ(K)
denote the density of a densest packing of translates of the convex body K in E

d, d ≥ 3. Moreover, let

Iq(K) =
(Svold−1(bdK))d

(Vold(K))d−1 be the isoperimetric quotient of the convex body K, where Svold−1(bdK) denotes

the (d − 1)-dimensional surface volume of the boundary bdK of K and Vold(K) denotes the d-dimensional
volume of K. Moreover, let B denote the closed d-dimensional ball of radius 1 centered at the origin in E

d.
Finally, let K0 = 1

2 (K+ (−K)) be the normalized (centrally symmetric) difference body assigned to K with
H(K0) (resp., h(K0)) standing for the Hadwiger number (resp., one-sided Hadwiger number) of K0.

Theorem 6.7 The number of touching pairs in an arbitrary packing of n > 1 translates of the convex body
K in E

d, d ≥ 3 is at most

H(K0)

2
· n − 1

2d · (δ(K0)
(d−1)

d

·
( Iq(B)

Iq(K0)

) 1
d · n

(d−1)
d − (H(K0) − h(K0) − 1).

Theorem 6.8 The number of touching pairs in an arbitrary packing of n > 1 translates of the convex body
K in E

d, d ≥ 3 is at most

3d − 1

2
· n − ω

1
d

d

2d+1
· n

(d−1)
d ,

where ωd = π
d

2

Γ( d

2 +1)
is the volume of a d-dimensional ball of radius 1 in E

d.

7 Isoperimetric problems for Voronoi cells

Recall that a family of non-overlapping 3-dimensional balls of radii 1 in Euclidean 3-space, E
3 is called a

unit ball packing in E
3. The density of the packing is the proportion of space covered by these unit balls.

The sphere packing problem asks for the densest packing of unit balls in E
3. The conjecture that the density

of any unit ball packing in E
3 is at most π√

18
= 0.74078 . . . is often attributed to Kepler that he stated in

1611. The problem of proving the Kepler conjecture appears as part of Hilbert’s 18th problem [56]. Using
an ingenious argument which works in any dimension, Rogers [79] obtained the upper bound 0.77963 . . . for
the density of unit ball packings in E

3. This bound has been improved by Lindsey [64], and Muder [68],
[69] to 0.773055 . . .. Hsiang [57], [58] proposed an elaborate line of attack (along the ideas of L. Fejes Tóth
suggested 40 years earlier), but his claim that he settled Kepler’s conjecture seems exaggerated. However, so
far no one has found any serious gap in the approach of Hales [50], [51], [52], [53], although no one has been
able to fully verify it either. This is not too surprising, given that the detailed argument is described in
several papers and relies on long computer aided calculations of more than 5000 subproblems. Hales shows
the following remarkable theorem.
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Theorem 7.1 The densest packing of unit balls in E
3 has density π√

18
, which is attained by the ”cannonball

packing”.

For several of the above mentioned papers Voronoi cells of unit ball packings play a central role. Recall
that the Voronoi cell of a unit ball in a packing of unit balls in E

3 is the set of points that are not farther
away from the center of the given ball than from any other ball’s center. As it is well-known, the Voronoi
cells of a unit ball packing in E

3 form a tiling of E
3. One of the most attractive problems on Voronoi cells

is the Dodecahedral Conjecture first phrased by L. Fejes Tóth in [40]. According to this the volume of any
Voronoi cell in a packing of unit balls in E

3 is at least as large as the volume of a regular dodecahedron with
inradius 1. Very recently Hales and McLaughlin [54] announced a solution to this problem:

Theorem 7.2 The volume of any Voronoi cell in a packing of unit balls in E
3 is at least as large as the

volume of a regular dodecahedron with inradius 1.

Now, we can make a step further and take a look of the following stronger version of the Dodecahedral
Conjecture called the Strong Dodecahedral Conjecture. It was first articulated in [16].

Conjecture 7.3 The surface area of any Voronoi cell in a packing with unit balls in E
3 is at least as large

as 16.6508 . . . the surface area of a regular dodecahedron of inradius 1.

It is easy to see that if true, then the above conjecture implies the Dodecahedral Conjecture. The strongest
inequality known towards the Strong Dodecahedral Conjecture is due to K. Bezdek and E. Daróczy-Kiss
published in [21]. In order to phrase it properly we introduce a bit of terminology. A face cone of a Voronoi
cell in a packing with unit balls in E

3 is the convex hull of the face chosen and the center of the unit ball
sitting in the given Voronoi cell. The surface area density of a unit ball in a face cone is simply the spherical
area of the region of the unit sphere (centered at the apex of the face cone) that belongs to the face cone
divided by the Euclidean area of the face. It should be clear from these definitions that if we have an upper
bound for the surface area density in face cones of Voronoi cells, then the reciprocal of this upper bound
times 4π (the surface area of a unit ball) is a lower bound for the surface area of Voronoi cells. Now, we are
ready to state the main theorem of [21].

Theorem 7.4 The surface area density of a unit ball in any face cone of a Voronoi cell in an arbitrary
packing of unit balls of E

3 is at most

−9π + 30 arccos
(√

3
2 sin

(
π
5

))

5 tan
(

π
5

) = 0.77836 . . . ,

and so the surface area of any Voronoi cell in a packing with unit balls in E3 is at least

20π tan
(

π
5

)

−9π + 30 arccos
(√

3
2 sin

(
π
5

)) = 16.1445 . . . .

Moreover, the above upper bound 0.77836 . . . for the surface area density is best possible in the following
sense. The surface area density in the face cone of any n-sided face with n = 4, 5 of a Voronoi cell in an
arbitrary packing of unit balls of E

3 is at most

3(2 − n)π + 6n · arccos
(√

3
2 sin

(
π
n

))

n tan
(

π
n

)

and equality is achieved when the face is a regular n-gon inscribed in a circle of radius 1√
3·cos( π

n)
and positioned

such that it is tangent to the corresponding unit ball of the packing at its center.

The Kelvin problem asks for the surface minimizing partition of E
3 into cells of equal volume. According

to Lhuilier’s memoir [63] of 1781, the problem has been described as one of the most difficult in geometry. The
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solution proposed by Kelvin is a natural generalization of the hexagonal honeycomb in E
2. Take the Voronoi

cells of the dual lattice giving the densest sphere packing. This gives truncated octahedra, the Voronoi cells
of the body centered cubic lattice. A small deformation of the faces produces a minimal surface, which is
Kelvin’s proposed solution. Just recently Phelan and Weaire [78] produced a remarkable counter-example
to the Kelvin conjecture. Their work indicates also that Kelvin’s original question is even harder than it
was expected. In fact, the following simplier and quite fundamental question seems to be still open. One
can regard this as the isoperimetric inequality for parallelohedra and one can call the conjecture below the
Truncated Octahedral Conjecture. (Recall that a parallelohedron is a 3-dimensional convex polyhedron
that tiles E

3 by translation.)

Conjecture 7.5 The surface area of any parallelohedron of volume 1 in E
3 is at least as large as the surface

area of the truncated octahedral Voronoi cell of the body-centered cubic lattice of volume 1 in E
3.

8 The strong Kepler conjecture

In this section we propose a way to extend Kepler’s conjecture to finite packings of congruent balls in 3-space
of constant curvature that is in Euclidean 3-space E

3, in spherical 3-space S
3 and in hyperbolic 3-space H

3.
The idea goes back to the theorems of L. Fejes Tóth [41] in E

2, J. Molnár [67] in S
2 and K. Bezdek [13], [14]

in H
2 which in short, can be phrased as follows:

Theorem 8.1 If at least two congruent circular disks are packed in a circular disk in the plane of constant
curvature, then the packing density is always less than π√

12
.

The hyperbolic case of this theorem proved by K. Bezdek in [13] (see also [14]) seemed quite unexpected
because there are (infinite) packings of congruent circular disks in H

2 in which the density of a circular disk
in its respective Voronoi cell is significantly larger than π√

12
. Also, we note that the constant π√

12
is best

possible in the above theorem. Last we have to mention that since the standard methods do not give a
good definition of density in H

2 (in fact all of them fail to work as it was observed by Böröczky [25]) and
since even today we know only a rather ”fancy” way of defining density in hyperbolic space (see the work of
Bowen and Radin [24]) it seems important to study finite packings in bounded containers of the hyperbolic
space where there is no complication with the proper definition of density. All this supports the idea of the
following conjecture that we call the Strong Kepler Conjecture:

Conjecture 8.2 The density of at least two non-overlapping congruent balls in a ball of the 3-space of
constant curvature (having radius strictly less than π

2 in the case of S
3) is always less than π√

18
= 0.74048 . . . .

The following theorem proved by K. Bezdek [22] supports the above conjecture.

Theorem 8.3 The density of at least two non-overlapping congruent balls in a ball of the 3-space of constant
curvature (having radius strictly less than π

2 in the case of S
3) is always less than Rogers’ upper bound for

the density of packings of congruent balls in E
3 that is less than 0.77963 . . . .

9 Bounds on the density of sphere packings in higher dimensions

Recall that a family of non-overlapping d−dimensional balls of radii 1 in the d−dimensional Euclidean space
E

d is called a unit ball packing of E
d. The density of the packing is the proportion of space covered by these

unit balls. The sphere packing problem asks for the densest packing of unit balls in E
d. Indubitably, of all

problems concerning packing it was the sphere packing problem which attracted the most attention in the
past decade. It has its roots in geometry, number theory and information theory and it is part of Hilbert’s
18th problem. The reader is referred to [35] (especially the third edition, which has about 800 references
covering 1988-1998) for further information, definitions and references. In what follows we report on a few
selected developments some of which are fantastic recent news.

The Voronoi cell of a unit ball in a packing of unit balls in E
d is the set of points that are not farther away

from the center of the given ball than from any other ball’s center. As it is well-known the Voronoi cells of a
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unit ball packing in E
d form a tiling of E

d. One of the most attractive results on the sphere packing problem
was proved by C. A. Rogers [79] in 1958. It was rediscovered by Baranovskii [4] and extended to spherical
and hyperbolic spaces by Böröczky [27]. It can be phrased as follows. Take a regular d−dimensional simplex
of edge length 2 in E

d and then draw a d−dimensional unit ball around each vertex of the simplex. Let σd

denote the ratio of the volume of the portion of the simplex covered by balls to the volume of the simplex.
Then the volume of any Voronoi cell in a packing of unit balls in E

d is at least ωd

σd

, where ωd denotes the
volume of a d−dimensional unit ball. This has the following immediate corollary.

Theorem 9.1 The (upper) density of any unit ball packing in E
d is at most σd.

Daniel’s asymptotic formula [80] yields that

σd =
d

e
2−(0.5+o(1))d (as d → ∞).

Then 20 years later, in 1978 Kabatjanskii and Levenshtein [59] improved this bound in the exponential order
of magnitude as follows. They proved the following theorem.

Theorem 9.2 The (upper) density of any unit ball packing in E
d is at most

2−(0.599+o(1))d (as d → ∞).

In fact, Rogers’ bound is better than the Kabatjanskii-Levenshtein bound for 4 ≤ d ≤ 42 and above that
the Kabatjanskii-Levenshtein bound takes over ([35], p. 20).

There has been some very important recent progress concerning the existence of economical packings.
On the one hand, improving earlier results, Ball [2] proved through a very elegant completely new variational
argument the following statement. (See also [48] for a similar result of W. Schmidt on centrally symmetric
convex bodies.)

Theorem 9.3 For each d, there is a lattice packing of unit balls in E
d with density at least

d − 1

2d−1
ζ(d),

where ζ(d) =
∑∞

k=1
1
kd is the Riemann zeta function.

On the other hand, for some small values of d, there are explicit (lattice) packings which give densities
(considerably) higher than the bound just stated. The reader is referred to [35] and [73] for a comprehensive
view of results of this type.

All these explicit constructions raise the well-known challenging question whether one can find a smaller
upper bound than Rogers’ bound for the density of unit ball packings, especially in low dimensions. The
next theorem due to K. Bezdek [17] does exactly this by improving Rogers’ upper bound for the density of
unit ball packings in Euclidean d−space for all d ≥ 8. Since this result extends also some of the results of
Section 7 to higher dimensions we phrase it in details. For this we need a bit of notation. As usual, let
lin(. . . ), aff(. . . ), conv(. . . ), Vold(. . . ), ωd, SVold−1(. . . ), dist(. . . ), ‖ . . . ‖ and o refer to the linear hull, the
affine hull, the convex hull in E

d, the d−dimensional Euclidean volume measure, the d−dimensional volume
of a d−dimensional unit ball, the (d − 1)−dimensional spherical volume measure, the distance function in
E

d, the standard Euclidean norm and to the origin in E
d.

Let conv{o,w1, . . . ,wd} be a d−dimensional simplex having the property that the linear hull lin{wj −
wi|i < j ≤ d} is orthogonal to the vector wi in E

d, d ≥ 8 for all 1 ≤ i ≤ d − 1 that is let

conv{o,w1, . . . ,wd}

be a d−dimensional orthoscheme in E
d moreover, let

‖wi‖ =

√
2i

i + 1
for all 1 ≤ i ≤ d.
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It is clear that in the right triangle M wd−2wd−1wd with right angle at the vertex wd−1 we have the inequality

‖wd − wd−1‖ =
√

2
d(d+1) <

√
2

(d−1)d = ‖wd−1 − wd−2‖ and therefore ∠wd−1wd−2wd < π
4 . Now, in the

plane aff{wd−2,wd−1, wd} of the triangle M wd−2wd−1wd let

C wd−2wdwd+1

denote the circular sector of central angle ∠wdwd−2wd+1 = π
4 − ∠wd−1wd−2wd and of center wd−2 sitting

over the circular arc with endpoints wd,wd+1 and radius ‖wd − wd−2‖ = ‖wd+1 − wd−2‖ such that C

wd−2wdwd+1 and M wd−2wd−1wd are adjacent along the line segment wd−2wd and are separated by the
line of wd−2wd. Then let

D(wd−2,wd−1,wd,wd+1) =M wd−2wd−1wd∪ C wd−2wdwd+1

be the convex domain generated by the triangle M wd−2wd−1wd with constant angle

∠wd−1wd−2wd+1 =
π

4
.

Now, let
W = conv ({o,w1, . . . ,wd−3} ∪ D(wd−2,wd−1,wd,wd+1))

be the d−dimensional wedge (or cone) with (d − 1)−dimensional base

QW = conv ({w1, . . . ,wd−3} ∪ D(wd−2,wd−1,wd,wd+1)) and apex o.

Finally, if B = {x ∈ E
d| dist(o,x) = ‖x‖ ≤ 1} denotes the d−dimensional unit ball centered at the origin o

of and S = {x ∈ E
d| dist(o,x) = ‖x‖ = 1} denotes the (d− 1)−dimensional unit sphere centered at o, then

let

σ̂d =
SVold−1(W ∩ S)

Vold−1(QW )
=

Vold(W ∩ B)

Vold(W )

be the the surface density (resp., volume density) of the unit sphere S (resp., of the unit ball B) in the wedge
W . For the sake of completeness we remark that as the regular d−dimensional simplex of edge length 2 can
be dissected into (d + 1)! pieces each being congruent to conv{o,w1, . . . ,wd} therefore

σd =
Vold(conv{o,w1, . . . ,wd} ∩ B)

Vold(conv{o,w1, . . . ,wd})
.

Now, we are ready to state the main result of [17]. Recall that the surface density of any unit sphere in
its Voronoi cell in a unit sphere packing of E

d is defined as the ratio of the surface area of the unit sphere
to the surface area of its Voronoi cell.

Theorem 9.4 The surface area of any Voronoi cell in a packing of unit balls in the d−dimensional Euclidean
space E

d, d ≥ 8 is at least d·ωd

bσd

, that is the surface density of any unit sphere in its Voronoi cell in a unit

sphere packing of E
d, d ≥ 8 is at most σ̂d. Thus, the volume of any Voronoi cell in a packing of unit balls in

E
d, d ≥ 8 is at least ωd

bσd

and so, the (upper) density of any unit ball packing in E
d, d ≥ 8 is at most σ̂d < σd.

In fact, K. Bezdek [22] extended the above theorem to spherical space (Sd) as well as to hyperbolic
space (Hd) in the following local sense. Consider packings of congruent balls of small radii only. Then for

sufficiently small radii r of the given space S
d (resp., H

d) one can define the quantity σ̂Sd(r) = Vold(W∩B)
Vold(W )

(resp., σ̂Hd(r) = Vold(W∩B)
Vold(W ) ) in a way very similar to the Euclidean case. (Here we simply ommit the obvious

details.) With this notation the following theorem holds.

Theorem 9.5 Consider an arbitrary packing of spheres of radius r in S
d (resp., H

d) with d ≥ 8. Then there
exists an r(d) > 0 such that the (volume) density of each ball (of the given packing) in its respective Voronoi
cell is at most σ̂Sd(r) (resp., σ̂Hd(r)) provided that r ≤ r(d).
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Further improvements on the upper bound σ̂d of K. Bezdek for the dimensions from 4 to 36 have been
obtained very recently by Cohn and Elkies [33]. They developed an analogue for sphere packing of the linear
programming bounds for error correcting codes, and used it to prove new upper bounds for the density of
sphere packings, which are better than K. Bezdek’s upper bounds σ̂d for the dimensions 4 through 36. Their
method together with the best known sphere packings yield the following remarkable theorem in dimensions
8 and 24.

Theorem 9.6 The density of the densest unit ball packing in E
8 (resp., E

24) is at least 0.2536 . . . (resp.,
0.00192 . . . ) and is at most 0.2537... (resp., 0.00196 . . . ).

Cohn and Elkies [33] conjecture that their approach can be used to solve the sphere packing problem in
E

8 (resp., E
24).

Conjecture 9.7 The E8 root lattice (resp., the Leech lattice) that produces the corresponding lower bound
in the previous theorem in fact, represents the largest possible density for unit sphere packings in E

8 (resp.,
E

24).

If linear programming bounds can indeed be used to prove optimality of these lattices, it would not come
as a complete surprise, because for example, the kissing number problem in these dimensions was solved
similarly (for more details see Section 2).

Last but not least we mention the following striking result of Cohn and Kumar [34] according to which
the Leech lattice is the densest lattice packing in E

24. (The densest lattices have been known up to dimension
8.)

Theorem 9.8 The Leech lattice is the unique densest lattice in E
24, up to scaling and isometries of E

24.

We close this section with a short summary on the recent progress of L. Fejes Tóth’s [45] ”sausage
conjecture” that is one of the main problems of the theory of finite sphere packings. According to this
conjecture if in E

d, d ≥ 5 we take n ≥ 1 non-overlapping unit balls, then the volume of their convex hull is at
least as large as the volume of the convex hull of the ”sausage arrangement” of n non-overlapping unit balls
under which we mean an arrangement whose centers lie on a line of E

d such that the unit balls of any two
consecutive centers touch each other. By optimizing the methods developed by Betke, Henk and Wills [7],
[8] finally, Betke and Henk [6] succeded to prove the sausage conjecture of L. Fejes Tóth in any dimension
of at least 42. Thus, we have the following natural looking but, far not trivial theorem.

Theorem 9.9 The sausage conjecture holds in E
d for all d ≥ 42.

It remains a highly interesting challange to prove or disprove the sausage conjecture of L. Fejes Tóth for
the dimensions between 5 and 41.

Conjecture 9.10 Let 5 ≤ d ≤ 41 be given. Then the volume of the convex hull of n ≥ 1 non-overlapping
unit balls in E

d is at least as large as the volume of the convex hull of the ”sausage arrangement” of n

non-overlapping unit balls which is an arrangement whose centers lie on a line of E
d such that the unit balls

of any two consecutive centers touch each other.

10 Solidity and uniform stability

The notion of solidity, introduced by L. Fejes Tóth [43] to overcome difficulties of the proper definition of
density in the hyperbolic plane, has been proved very useful and stimulating. Roughly speaking a family of
convex sets generating a packing is said to be solid if no proper rearrangement of any finite subset of the
packing elements can provide a packing. More concretely, a circle packing in the plane of constant curvature
is called solid if no finite subset of the circles can be rearranged such that the rearranged circles together
with the rest of the circles form a packing not congruent to the original. An (easy) example for solid circle
packings is the family of incircles of a regular tiling {p, 3} for any p ≥ 3. In fact, a closer look of this
example led L. Fejes Tóth [46] to the following simple sounding but difficult problem: he conjectured that
the incircles of a regular tiling {p, 3} form a strongly solid packing for any p ≥ 5, i.e. by removing any circle
from the packing the remaining circles still form a solid packing. This conjecture has been verified for p = 5
by Böröczky [28] and Danzer [38] and for p ≥ 8 by A. Bezdek [9]. Thus, we have the following theorem.
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Theorem 10.1 The incircles of a regular tiling {p, 3} form a strongly solid packing for p = 5 and for any
p ≥ 8.

The outstanding open question left is the following.

Conjecture 10.2 The incircles of a regular tiling {p, 3} form a strongly solid packing for p = 6 as well as
for p = 7.

In connection with solidity and finite stability (of circle packings) the notion of uniform stability (of
sphere packings) has been introduced by A. Bezdek, K. Bezdek and R. Connelly [11]. According to this a
sphere packing (in the space of constant curvature) is said to be uniformly stable if there exists an ε > 0
such that no finite subset of the balls of the packing can be rearranged such that each ball is moved by a
distance less than ε and the rearranged balls together with the rest of the balls form a packing not congruent
to the original one. Now, suppose that P is a packing of (not necessarily) congruent balls in E

d. Let G

be the contact graph of P , where the centers of the balls serve as the vertices of G and an edge is placed
between two vertices when the corresponding two balls are tangent. The following basic principle can be
used to show that many packings are uniformly stable.

Theorem 10.3 Suppose that E
d can be tiled face-to-face by congruent copies of finitely many convex poly-

topes P1,P2, . . . ,Pn such that the vertices and edges of that tiling form the vertex and edge system of the
contact graph G of the packing P of some balls in E

d. If each Pi is strictly locally volume expanding with
respect to G, then the packing P is uniformly stable.

By taking a closer look of the Delaunay tilings of some lattice sphere packings one can derive the following
corollary (for more details see [11]).

Theorem 10.4 The densest lattice sphere packings A2, A3, D4, D5, E6, E7, E8 up to dimension 8 are all
uniformly stable.

Last we mention another corollary (for details see [11]), which was observed also by Bárány and Dolbilin
[5] and which supports the above mentioned conjecture of L. Fejes Tóth.

Theorem 10.5 Consider the triangular packing of circular disks of equal radii in E
2 where each disk is

tangent to exactly six others. Remove one disk to obtain the packing P ′. Then the packing P ′ is uniformly
stable.
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[27] K. Böröczky, Packing of spheres in spaces of constant curvature, Acta Math. Acad. Sci. Hungar. 32
(1978), 243-261.
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[29] K. Böröczky, The Newton-Gregory problem revisited, Discrete Geometry, ed.: A. Bezdek, Marcel Dekker
2003, 103–110.

[30] P. Brass, On equilateral simplices in normed spaces, Beiträge zur Alg. Geom. 40 (1990), 303–307.

[31] P. Brass, Erdős distance problems in normed spaces, Comput. Geometry 6 (1996), 195–214.



REFERENCES 15

[32] B. Casselman, The difficulties of kissing in three dimensions, Notices of the AMS 51/8 (2004), 884–885.

[33] H. Cohn and Noam Elkies, New upper bounds on sphere packings I, Ann. Math. 157 (2003), 689–714.

[34] H. Cohn and A. Kumar, Optimality and uniqueness of the Leech lattice among lattices, Preprint (2003),
arXiv:math.MG0403263.

[35] J.H. Conway and N.J.A. Sloane, Sphere packings, lattices and groups, Springer 1999.

[36] H.S.M. Coxeter, An upper bound for the number of equal nonoverlapping spheres that can touch another
of the same size, Proc. Sympos. Pure Math. 7 (1963), 53–71.
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