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1 Overview

Solutions to Einstein’s equations of general relativity describe, among other things, the generation
and propagation of gravitational waves. Interest in numerical relativity has been bolstered by the
recent construction of gravitational wave observatories such as LIGO (the Laser Interferometric
Gravitational-wave Observatory). This NSF-supported project consists of two observatories (near
Hanford, Washington and Livingston, Louisiana) that began collecting data in September 2002.
Astronomy has been revolutionized in the past by developing the ability to observe electromagnetic
radiation in new wavelength regimes (e.g., by X-ray and radio telescopes). Similarly, if successful, the
development of gravitational-wave observatories will surely lead to many new surprises. However,
gravitational waves reaching earth are incredibly weak and have yet to be directly detected. Being
able to predict the gravitational wave signature of various possible events would help interpret any
data received and separate the weak signal from noise.

Numerical relativity shares many features with other computational sciences involving systems
of partial differential equations, such as computational fluid dynamics, solid mechanics, and optics.
Many of the techniques developed to overcome computational difficulties in these areas are relevant to
solving the Einstein equations as well. However, numerical relativity has challenges and complexities
that often make it difficult to apply standard techniques directly and may require the development
of new methodologies in applied and computational mathematics.

The Einstein equations can be written in the deceptively simple tensor form

Gµν = 8πTµν

where Gµν is the Einstein tensor (encapsulating geometric information about the structure of space-
time) and Tµν is the stress-energy tensor (modeling the mass/energy and momentum of matter that
both reacts to and creates the gravitational structure). Most of the discussion at this workshop
concerned the vacuum Einstein equations, in which case Tµν = 0. The resulting equation Gµν = 0
hides a complicated set of geometric equations within the tensor notation. The Einstein equations
represent one of the richest and most difficult systems of PDEs describing a viable physical theory.
Simulations will play a crucial role in understanding these equations, particularly since experiments
cannot be performed. To date, most of what is known about solutions of these equations has been ob-
tained from different approximations that limit the nature of solutions found. Numerical simulations
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have the potential for unraveling the full consequences of the theory and robust implementations of
the equations will certainly give rise to surprises.

This workshop engaged 38 participants in four and a half days of intense discussions of relativity
and numerical approaches. Of these participants, roughly half can best be catagorized as physicists,
based on their background and academic appointments, and the remainder as mathematicians. The
main goal of the workshop was to bring these communities together to share ideas and learn from
one another. There was widespread agreement that the workshop was a success in this regard. In
addition to the transfer of information in talks and informal discussions, a number of potential new
collaborations were initiated.

The speakers did an excellent job of presenting talks aimed educating others about various
problems and techniques. The introductory talks the first morning set the stage for more detailed
discussions of various aspects of this problem.

Douglas Arnold gave an extremely clear and elegant discussion of the basic differential geometry
and tensor calculus that underlies most work in numerical work in relativity. Choptuik followed with
a discussion of some of the key issues that distinguishes relativity from cousins in computational
science. For example, he used the well known analogue between the Einstein and Maxwell systems
as an illustration of how each continuous gauge freedom actually eliminated two dynamical degrees
of freedom, and he emphasized how the counting of dynamical degrees of freedom was frequently
confused in the literature.

The major highlight of the meeting was the talk by Frans Pretorius, who presented very recent
numerical results showing the collision of two black holes and the resulting gravitational radiation.
Figures 1 and 2 can only capture a small part of the impact of the full animations, and particularly
for those who have been following the numerical work on the binary black hole problem, the results
are nothing short of stunning.

As will be discussed in more detail Pretorius’ code is especially notable (but hardly unique in
the history of numerical relativity) in that it uses so little “conventional wisdom” vis a vis past
experience in “3-D binary black hole” numerical relativity. For example, the code is based on
generalized harmonic coordinates, which, save for some seminal work by Garfinkle [?], as well as
Winicour and YYY [?], have not been previously used in a major numerical relativity effort.

Calculations of the type Pretorius showed have been a goal of many groups working in this
area and so there was much interest in the particular set of techniques used to achieve his results.
However, we note that the comment made by one of our colleagues (a numerical relativist) at the end
of Pretorius’ talk—“I believe that this is the beginning of the end of the binary black hole problem”—
is symptomatic of an attitude that has plagued numerical relativity since its inception in the early
1970’s. Numerical relativists have had a unnerving and demonstrably counterproductive tendency
to rush on to the “next problem”, typically characterized by substanially higher computational
demands, more or less at the earliest sign of success with their current calculation. This has meant
that very few problems in numerical relativity have been exhaustively studied, not to mention that
progress has been unnecessarily slowed since researchers spend too much time (days to weeks) waiting
for calculations to complete.

We would argue that Pretorius’ computations rather mark the “end of the beginning” of the
the binary black hole era, that his work is an important demonstration of an end-to-end solution
of the problem that apparently has workable solutions for all of the key challenges (AMR, black
hole excision, treatment of outer boundaries, ...) that were identified long ago, and that most
of the exciting work to be done in numerical relativity still lies ahead. Indeed, the fact that the
specific calculation showed required 70,000 CPU hours is a sobering fact, even given the capacity of
contemporary computers.

Before proceeding to a conference summary kindly provided to us by Carsten Gundlach, the
organizers would like to note that we know that we speak on behalf of all of the participants in
terms of our appreciation for the absolutely brilliant way that the center has been conceived and is
operating. We all look forward eagerly to our next trip to BIRS!
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Figure 1: Early time evolution of the lapse function, α(t, x, y, 0), from the “medium-resolution”
equal-mass black hole collision described in [?]. Time is measured in units of the mass, M , of either
of the initial black holes. Values of the lapse function vary from about 0.5 near the black hole
horizons to approximately 1.0 at large distances from the holes. See text for further discussion.

2 Conference Summary

Reprinted from Matters of Gravity (the newsletter of the Gravitation Topical Group of the American
Physical Society), Fall 2005 issue.

The workshop was organised by Doug Arnold, Matt Choptuik, Luis Lehner, Randy LeVeque and
Eitan Tadmor, with the purpose of bringing together researchers in GR working numerically and
analytically. 20 invited half-hour talks were given over 4 days, with plenty of time for discussions
between talks, over meals, and in the evening.

The BIRS page on the programme can be found on

http://www.pims.math.ca/birs/

and Matt Choptuik’s page including PDF files of talks is

http://bh0.physics.ubc.ca/BIRS05/

To complement this, I shall highlight only a few of the talks.
In the 1990s, some researchers were concentrating on obtaining physics insight from effectively

1+1 dimensional problems: what cosmological spacetimes with two commuting Killing vectors can
tell us about the nature of generic singularities (Berger and collaborators), and what we can learn
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Figure 2: Complete time evolution of lapse function, α(t, x, y, 0), from the “medium-resolution”
black hole collision described in [?]. The ability of the code to evolve stably for many dynamical
times after the merger is evident.

about cosmic censorship from spherical collapse (Choptuik and students). More ambitious, ax-
isymmetric or 3D, work confronted overlapping problems hard to disentangle in the low resolution
available in 3D. In particular, instabilities already present in the continuum problem were not clearly
distinguished from those added at the discretisation stage. The Banff meeting showed that now at
least we have a clearer view of the problems facing us.

3+1 approaches need to start from a well-posed initial-boundary value problem in the continuum,
with boundary conditions that are compatible with the constraints. Well-posedness can be proved by
energy methods, based on a symmetric hyperbolic form of the field equations. Olivier Sarbach drops
the energy estimate based on the symmetriser in favour of a “physical” energy plus a constraint
energy. The remaining “gauge” energy is estimated separately using elliptic gauge conditions. This
intuitively appealing programme has been completed for electromagnetism, although the gauge
seems a bit restrictive. Work with Nagy is under way on general relativity. By contrast Oscar

Reula emphasised that strong hyperbolicity is often enough. He could prove that whenever a first-
order system subject to constraints is strongly hyperbolic (eg the BSSN formulation) then so is the
associated constraint evolution system. Heinz Kreiss surprised some of his disciples in the numerical
relativity community by also stressing that energy methods are too limited. In a series of examples,
he proposed a general approach based on reducing initial-boundary value problems to half-space
problems with frozen coefficients and analysing the dependence of each Fourier mode on its initial
and boundary data.

On the numerical methods front, Manuel Tiglio reported on collaborative work to discretise
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systems of first-order strongly hyperbolic equations on multiple touching patches (for example 6
cubes to form a hollow sphere), using summation by parts and penalty methods. Their animations
of toy problems looked very impressive, and the whole technology will be available as a general tool
through the Cactus infrastructure. Michael Holst and Rick Falk gave review talks on finite elements
for both elliptic and evolution equations. This is promising for nontrivial domains, but has not yet
been applied to numerical relativity.

Other talks showed what 3D simulations can do. David Garfinkle reported on simulations of
cosmological singularities without any symmetries on T 3. The key elements of his approach are
the use of inverse mean curvature flow slicing (α = 1/K) and a tetrad and connection formulation
used successfully by Uggla and coworkers in analytical studies. His results are compatible with the
BKL conjecture, although soon the resolution becomes too low to follow the development of ever
more decoupled Bianchi IX regions. Thomas Baumgarte summarised the state of the art in binary
neutron star simulations by himself and others, notably Masaru Shibata. There seems to be no real
showstopper for such simulations. Rather what is needed now is more resolution, and the modelling
of physical phenomena such as neutrinos, viscosity, and magnetic fields. Interesting results include
the formation in binary mergers of a hot neutron star held up only by differential rotation, and
expected to collapse later.

The most noted talk of the meeting was that of Frans Pretorius giving preliminary results on
binary black hole mergers using harmonic coordinates. His simulations no longer seem to be limited
by instabilities, but rather by computer power and time, and by unphysical initial data (there is
evidence that his initial data are very far from circular inspiral data). The key ingredients seem
to be the following: a working 3D AMR code on still massive computers, compactification of the
Cartesian spatial coordinates (that is, at i0) together with damping of outgoing waves, modified
harmonic coordinates, and a damping of the harmonic gauge constraint through lower order friction
terms (Gundlach). Generalised harmonic gauge (Friedrich) is (xµ)

;σ
;σ = Hµ, where the gauge

source functions Hµ are treated as given functions. Pretorius makes H0 obey a wave equation
(

H0
);σ

;σ
∼ α− 1, which prevents the lapse from collapsing without affecting the well-posedness. This

works less well for critical collapse.

3 Additional Information

3.1 Formulations of the equations

The tensorial nature of the Einstein equations allows a multitude of different formulations as partial
differential equations to be discretized and solved numerically. Most numerical work is based on a
3 + 1 formulation of the equations, in which spacelike slices of the space-time metric are advanced
in a timelike direction.

There is considerable freedom in how one chooses the time slicing, as well as the spatial coordi-
nates within the constant-time surfaces, and these choices can have a major impact on the overall
efficacy of the solution algorithm. For instance, poor coordinate choices can lead to the development
of coordinate shocks or other nonphysical pathologies, or can result in the simulation encountering
physical singularities. All of these outcomes must be avoided in practice.

The hyperbolic equations are coupled through highly nonlinear source terms and this has ham-
pered the calculation of energy growth estimates at the continuum level. Related to this is the fact
that the stability of the numerical algorithms used is often hard to predict and/or achieve. For
instance, simply maintaining a steady state numerically in a stable manner can be a challenge for
many existent codes.

3.2 Constraint preservation

The hyperbolic system is also coupled with elliptic constraint equations between the dynamical
variables: at the continuum level, these constraints are automatically preserved in time (in the
boundary-free case) provided that they are satisfied at the initial time. At the discrete numerical
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level, so called free-evolution schemes 1 in which the constraints are only explicitly solved at the initial
time are often susceptible to instabilities that lead to manifest violations of the constraints. A variety
of options to address this problem are currently being considered, and no completely satisfactory
solution exists yet, although, as Pretorius’ work demonstrates, solutions continue to be available on
a case by case basis. The situation here is analogous to the case of magnetohydrodynamic equations
(MHD), or any other set of equations incorporating Maxwell’s equations for the magnetic field, in
which the divergence of the magnetic field must converge to zero in the continuum limit, and where
it has been found that schemes in which the divergence constraint is treated exactly, or as exactly
as possible, have a priori superior stability properties. In this case a variety of different approaches
have been studied in detail and are still competing. Significant complications here relative to the
Maxwell case include the facts that the Einstein constraints

G0µ = 8πT 0µ (1)

are tensorial and non-linear.

3.3 Black hole excision

In computing waves generated from black hole collisions, the event horizons of the black holes are
moving boundaries that must be computed numerically, and where suitable numerical boundary
conditions must be imposed. This can be particularly challenging during the merging phase, but
again, the empirical evidence suggests that this can now largely be viewed as an “engineering”
problem. In particular, Pretorius’ results (again, see Figs. XXX and XXX and note that the “blacked
out” regions are literally regions that have been excised from the computational domain. Also note
that the interior of the computational domain; i.e. the union of the exteriors of the excised regions—
is many grid points (FRANS: How many, typically?) within the apparent horizon. provide a
brilliant confirmation of the efficacy of the idea first espoused by Unruh to his graduate students in
the early 1980’s.

3.4 Outer boundary conditions

[compactification]

3.5 Singularity formation

The fact that gravitational collapse of stars can lead to the formation of black holes follows from
theorems of Hawking and Penrose, but these theorems give little information about the structure
of the singularities and numerical simulations are being used to fill in some of this knowledge. As
a singularity is approached, some terms in the equations blow up and others are negligible by com-
parison. The BKL conjecture [reference?] states that the time derivatives become more important
than spatial derivatives and that at each spatial point the dynamics approach that of a homogeneous
solution. David Garfinkle reported on some work on Gowdy spacetimes, a cosmological model in
which the spatial derivatives in the metric are multiplied by decaying exponentials. [References, also
to Andersson’s work?]

Simulations show that spatial derivatives become negligble almost everywhere but that spikes
form at some locations and the dynamics become a sequence of epochs and bounces. Most work so
far has been on the 1 + 1 spherically symmetric case using many grid points to capture the spikes.
In more dimensions adaptive refinement would be very useful to capture the analogous behavior,
which could be co-dimenison 1 surfaces or 1-dimensional spikes. [??].

1Here the interested reader is urged to consult the classic paper by Piran [?] which describes his detailed study of
cylindrically symmetric (and thus involving 1+1-D PDEs) systems in general relativity. In this seminal work, Piran
not only defines the concepts and nomenclature such as “free evolution” and “constrained evolution” that subsequent
generations of numerical relativists would use, he rather exhaustively investigates various implementations of various
schemes. Largely on the basis of empirical evidence he draws a conclusion that remains true to this date. Schemes in
which the constraints are explicitly satisfied have a higher chance, a priori, of being stable when treated with ”sensible”
discretizations. (e.g. centred, second-order finite difference schemes with Crank-Nicholson time differencing, than
those in which the constraints are explicitly satisfied only at t = 0.
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3.6 Pretorius’ binary black hole evolutions

As mentioned in the introduction above, the highlight of the meeting, at least from the numerical
relativity vantage point, was Frans Pretorius’ talk on his ongoing computation of black hole mergers
using his recently developed “generalized harmonic” code. As also mentioned, Pretorius’ current
effort is quite notable for the number of approaches and techniques that it contains that represent
departures from “recommended” or “traditional” practice.

Following Friedrich [?] and Garfinkle [?], Pretorius chooses coordinates xµ ≡ (t, xi) to satisfy

∇α∇
αxµ = H (xµ) . (2)

where ∇α is the spacetime covariant derivative operator compatible with the metric (∇αgµν = 0)
and the Hµ are four functions, which are to be (and must be!) specified completely in order to fix
the “gauge”. They are also to be viewed as independent of the fundamental dynamical variables,
which in this approach are simply the metric components, gµν themselves.

The traditional harmonic coordinates, used for example in Choquet-Bruhat’s pioneering work in
the late 50’s on (local) existence and uniqueness of solutions of the Einstein field equations, have
also been used in numerical relativity, but have not had a major impact. The reason for this is
basically that one exhausts too much coordiante freedom in demanding

∇α∇
αxµ = 0 . (3)

Specifically, in the Cauchy problem context one gets to specify (and thus must specify!) precisely
6 numbers per spatial gridpoint at t = 0, namely xi and ∂tx

i, and from then on (3) and (3) determines
the coordinatization of the spacetime as it is constructed, constant-time slice by constant-time slice.
This means that anything that we are to “encode” in xµ to allow the coordinates, for example, to
gracefully cross a horizon with little or no fuss (e.g. in Schwarzschild, ingoing Eddingtion-Finkelstein
coordinates, no fuss; usual Schwarzschild, much fuss), must be “encoded” in the initial slice. (Bear
in mind that it will be generally impossible, for example, to tell whether a given intial data set will
evolve into a black hole without actually performing the full dynamical evolution).

Thus, at least heuristically, it seems that with harmonic coordinates we exhaust too much co-
ordinate freedom at the initial time: we specify xi and ∂txi on the initial time slice, then hope for
the best. This is very much at odds with the successful general approaches to coordinate choices
for black holes spacetimes which are invariably based on a local response to a local solution feature,
even though the governing PDE for the coordinate function may turn out to elliptic. Examples here
include maximal slicing

∆α = α (Q) (4)

which will, as is well known, drive α to0 in the vicinity of a black hole, and ingoing Eddingtion-
Finkelstein (t, r, θ, ϕ) in spherical symmetry, where r is chosen to be areal (i.e. proper area =
A(r) = 4πr2), and then t is chosen so that the ingoing tangent vector, ∂/∂u:

∂

∂u
≡

∂

∂t
−

∂

∂r
(5)

is ingoing null

gµν

(

∂

∂u

)µ (

∂

∂u

)ν

= gµν

(

∂

∂t
−

∂

∂r

)µ (

∂

∂t
−

∂

∂r

)ν

= 0 (6)

Friedrich’s significant insight then—which was then first implemented numerically by Garfinkle
as part of his ongoing program of study of the nature of final (cosmological) singularities—was to
note that by introducing the source functions Hµ, and then treating the Hµ as formally (if not
always operationally) independent, one recovered the full original four degrees of coordinate freedom
per spacetime point, but that, crucially, the resulting form of the Einstein field equations shared with
the “true” harmonic form, the fact that the principal part of the operator acting on the dynamical
variables (again, the gµν) is precisely a hyperbolic wave operator. Specifically, we have

gγδgαβ,γδ + 2gγδ
,(αgβδ,γ + 2Hα,β − 2HδΓ

δ
αβ + 2Γγ

δβΓδ
γα + 8π (2Tαβ − gαβT ) = 0 . (7)
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A further crucial insight due to Pretorius came about as a result of his considerable experi-
mentation with various choices for Hµ in strong field dynamical cases, most often involving one or
more black holes formed through prompt collapse of scalar field packets [?]. After trying various
strategies that involved setting Hµ directly without much success, Pretorius decided to look at what
the generalized harmonic condition had to say about the lapse and shift, α(t, xi) and βj(t, xi), even
though those “3+1” quantities do not explicitly appear in the formulation. Pretorius shows that,
writing the metric in the usual 3+1 form (“usual” modulo the use of h for the 3 −metric rather
than γ or g)

dss = −α2dt2 + hij

(

dxi + βidt
) (

dxj + βjdt
)

. (8)

Then, given (2), we have

H · n ≡ Hµn
mu = −nµ∂µ lnα−K (9)

⊥ Hi ≡ Hµh
iµ =

1

α
nµ∂µβ

i + hij∂j lnα− Γi
jkh

jk (10)

where nµ is the unit, future-directed normal to the spacelike hypersurfaces, K ≡ hijKij is the
mean extrinsic curvature, and the Γi

jk are the Christoffel symbols computed with respect to XXX?

Frans?

These last relations can be recast in the form

∂tα = −α2H · n+ . . . (11)

∂tβ
i = α2 ⊥ Hi + . . . (12)

and from these equations, Pretorius has come up with several prescriptions that effectively gener-
ate “good” choices for Hµ in the context of “real” calculations such as the collision of two black
holes. Specifically, although in his calculations to date spatialy harmonic (or perhaps one should
say “morally spatial harmonic”, since Pretorius actually uses the conditions Hi = 0, rather than
Hi = 0). In all cases the physical intuition is to stop the lapse from collapsing, as it is prone to do if
the temporal coordinate is “too harmonic”. If the lapse collapses indefinitely and rapidly (typically
exponentially) to 0, then there is a good chance that the solution is enountering a coordinate pathol-
ogy. In addition, even if there ultimately is no true pathological behaviour ((such as α(t, rp) → 0,
Pretorius has observed that values of α that are “too low” are apparently correlated with numerical
instability; so, again, the indicated rule-of-thumb is “keep your lapse up” (clearly, there is a great
deal of mathematics to be done here!).

Specifically then, Pretorius finds that the following choices for the evolution of the temporal
“gauge function” (source function), Ht, help maintain minα(t, r) ∼ 0.5 , even in the vicinity of
trapped surfaces, during rather generic black hole collisions.

(13)

Again, what is especially notable about this development is that without thinking about things from
a “3+1” perspective it clearly would have taken Pretorius much longer to come up with “good”
coordinates for the binary problem.

Another continuum-level technique incorporated in Pretorius’ new code is a successful realization
of an idea that many researchers have been expounding and investigating in recent years. The core
idea, again, at least at the heuristic level, is to add “constraint damping” terms to the evolution
equations so that one starts with initial data, that satisfy (some discrete version of) the constraints,
and then subsequently develop that data to the future, without reimposing the constraints (i.e. if we
perform free evolution), then any modes in the system that drive the solution away from constraint-
satisfaction are highly damped. In this instance it is not the Hamiltonian and momentum constraints
on which one focuses (although they are intimately related to the constraints which do consider),
but the generalized harmonic conditions themselves.

Specifically, defining, Cµ, via
Cµ ≡ Hµ −∇α∇αx

µ (14)
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the constraints are simply
cµ = 0 . (15)

Another small miracle that occurs in Pretorius’ implementation of this idea in his “generalized
harmonic code” is that the technique, as worked out most recently by workshop participant Gundlach
and his collaborators, following early work by XXX and YYY, apparently works even better in the
generic 3-D collision of two black holes that in has in any of the model problems in strong field
gravity to which it has been applied.

The constraint damping modification of the equations of motion is quite straightforward. Defining
the covector field, nµ, via

nµ ≡ −α∇µt (16)

the new equations of motion are given by (see (??) for the terms denoted . . .)

(17)

where the adjustable constant, κ controls the strength of the damping and can be determined
empirically. Pretorius also supplies an argument that gives an appropriate order of magnitude
for κ based on dimensional grounds. The final continuum-level approach that appears cruicial to
Pretorius recent success is his use of a compactified spatial domain, both at the continuum and

discrete levels. In the discrete case, this compactification, combined with Pretorius use of O(h2)
finite difference approximations to the equations of motion, and, cruically, his use of the now familiar
“Kreiss-Oliger” type dissipation, which acts as a low-pass filter and effectively quenches any and all
outgoing radiation at large distances, while minimizing “finite resolution” backscatter. The use of
spatial compactification avoids a whole host of problems that arise when one attempts to model
a scenario such as a black hole collision as a mixed initial-boundary value problem. Although
participants in this workshop, most notably Helmut Friedrich, have now worked out necessary and
sufficient conditions for the mixed problem to be well posed, it is safe to say that the translation
of these conditions into operational prescriptions for numerical relativists remains far from being
adequately worked out.

As important as the various continuum level techniques described above are to the success of
Pretorius’ calculations, the importance of his use of algorithms with near-optimal scaling proper-
ties can not be underestimated. While researchers with unigrid codes can only worry about the
basic factor of 16 in computational cost that accompanies a factor of 2 change in resolution, and
use “optimization” techniques to get their operation counts per space-time gridpoint and thus the
computational cost of the calculation down by a few, at best, AMR provides literally (many) orders
of magnitude in computational efficiency. Since there is never a “magical” resolution at which some
physical phenomena is “well resolved” using any specific finite difference scheme, once one has AMR,
traditional optimizations are largely irrelevant, since a change in overall resolution by a factor of 2,
which will never impact our ability to extract physics, will cost a factor of 16, which is entirely likely
to mask any constant factor speed ups due to traditional speed-ups (including, one should note, such
techniques as only using two iterations in iterated Crank Nicholson, rather than iterating to some
fixed convergence criteria, as common-sense and defensive numerical analysis would have us do.)

Almost as important is the fact that Pretorius code is built on top of what one might call a
“second generation” parallel-ready software infrastructure for finite difference calculations on block
structured AMR meshes. The term second-generation is appropriate, since Pretorius studied care-
fully the extant implementations that were designed to provide MPI-based parallel support for
adaptive finite difference computations. Specifically, he looked in detail at Parashar and Browne’s
DAGH (now called GRaCE), a parallel infrastructure that was specifically commissioned by, and
coded for, the US numerical relativity community during the BBH project (workshop particpants:
BBH PIs Choptuik, Laguna, Winicour; BBH Collaborators/PDFs/Grad Students: Arnold, Holst,
Friedrich, Baumgarte, Lehner, Gundlach, Hirschmann). Pretorius reanalyzed some of the motivat-
ing factors for certain design decisions (most notably the use of space-filling curves (Peano-, Hilbert)
to “linearize” the storage on a Berger & Oliger-style mesh hierarchy, the rationale being to keep
grid values on distinct levels of discretization, but defined at the same physical space-time point,
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close to one another in storage (see any of Parashar’s presentations from that era; they will con-
tain the exhortation “Locality, locality, locality”.)) Pretorius major contribution, which is a new
implementation of middleware to isolate the application programmer from the burden of MPI pro-
gramming, started with a detailed investigation of a mock-up of the refinement pattern likely to
result from the use of Berger & Oliger AMR, where he discovered that the locality afforded by the
use of space-filling curves, which is only an issue for interlevel transfers (and which, without loss
of generality, we can assume to be between two levels with discretizations hℓ and hℓ+1 = hℓ/2),
would typically be completely swamped by the basic interior computation costs. In other words,
due to the extreme “computational intensity” (quantified, for example, in terms of the number of
floating point ops per space-time grid-point-update: this measure can exceed 105 for certain dis-
crete implementations of the Einstein equations) expected of the general calculations, all reasonable
amounts of interlevel communication work are small (the old volume vs area argument), and thus,
at least for calculations such as the BH-BH collision, where the features that exist and/or develop
on a wide variety of scales nonetheless remain volume filling on their own scale (so that there is no
need for the rotated refinments discussed in the late 70’s by Brandt, and implemented by Berger &
Oliger in their 1984 JCP paper), there was no need to fuss with the, elegant and interesting, but
rather complicated-to-implement and debug approach used by Parashar and Browne. Rather, in
the coding of his new library (C-language application program interface (API)), while still retaining
much of the formal, axiomatic coding style for objects such as bounding boxes found in DAGH and
various antecedents such as LPARX libpamr.a, Pretorius distributes storage across processors on
a SIMD distributed machine disretization level by discretization level. Note that this means that
the data at different levels of discretization, but at a common physical space-time point will live on
distinct processors in general, in contrast to the DAGH scheme where locality, locality, locality was a
mantra. Again, any small overhead/loss of efficiency inherent in the level-by-level approach (and it
is not even clear that, theoretically, we should expect a loss of efficiency for the problems that we are
considering) vs the space-filling-curves approach is completely incidental since the code is anything

but communication-bound.
In practice, Pretorius has seen near-perfect scaling and optimal processor usage on all machines

with “fast” interconnects (Myrinet, Quadrix, scaling here to several dozen processors), and very good
scaling and reasonable processor usage on GigE machines (scaling here to 200 or more processors).
It is crucial to note that these near-ideal speed-ups are seen in the context of fully adaptive (in
both space and time) finite-difference solutions in 3 spatial dimensions. Other parallel-enabling
infrastructure in wide use in the numerical relativity community, most notably Cactus, and the
various “mesh refinement” (FMR, box-in-box, etc) extensions thereof, does not exhibit good scaling
to our knowledge.

4 Critical phenomena

Although the prime focus of the numerical relativity community continues to be the solution of the
compact binary problem (collisions of black holes and/or neutron stars), there is also substantial
continuing interest in black hole critical phenomena.

Black holes from from gravitational collapse, whereby, in very loose terms, the gravitational field
within the collapsing object (in astronomical contexts, typically a core of “nuclear ashes” too large
to be supported by neutron-degeneracy pressure), becomes strong enough to “trap light”. Due to
the universally attractive nature of the gravitational field (for matter sources with positive energy),
and the fact that the gravitational field acts as its own source in general relativity, it is reasonably
intuitive that the collapse process per se is unstable or irreversible in the sense that, once it gets
going it keeps going. Thus gravitational collapse is an inherently dynamical process, and, further,
one in which the gravitational fields are, by definition, just about as strong as they can be without
being hidden from external view.

The investigation of black hole critical phenomena takes consideration of gravitational collapse
a step further and asks ”What happens precisely at the threshold of black hole formation?”. Such a
threshold can be itself precisely defined by considering parametrized families of solutions representing
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collapse scenarios, so that the family p, controls the overall strength of the gravitational field as the
collapse proceeds. In particular, in critical collapse, the family is chosen so that as one tunes p from
low values (say p → 0) to high (say p → ∞) one goes from situations where no black holes form to
those holes do form. For any such family, there is then a critical parameter value, p = p⋆ at which
black hole formation sets in, and solutions that appear precisely at criticality are known as critical
solutions.

The phenomenology that is observed near-criticality has rather precise analogues in the critical
phenomena familar from the statistical mechanical study of phase transitions, and, indeed, viewing
the black hole mass as an order parameter, we see the analogues of both first and second order phase
transitions in these studies. The second order case, in which black hole formation is conjectured
to“turn on” at infinitesimal mass, has attracted the most interest, not least since the critical solutions
represent violations of certain weak forms of cosmic censorship.

At our meeting, an informal discussion group was held to debate whether or not one really can,
in principle, make arbitrarily small black holes using, for example, a spherically-symmetric, massless
scalar field as a matter source. The conventional answer to this question, is “yes”, as first conjectured
by Choptuik in the early 90’s. However, recent caculations by participant Aichelburg and collab-
orators, using an approach that, in contrast to Choptuik’s early calculations, has a computational
domain that includes future null infinity, which, at least according to a large group of “die-hards”
in the relativity community, is the best place to talk about the amount of mass in a system that
gets radiated away as massless radiation. Aichelburg’s calculations suggest that for any given family
there will, in fact, be a minimum mass black hole that can be formed, apparently due to radiation
backscatter effect. However, as became very clear in our debate, Aichelburg’s claim apparently leads
to other assertions about the asymptotic behaviour of the solution that don’t seem to make physical
sense, and it is probably fair to say that there were no converts one way or the other re whether or
not Aichelburg was seeing a “real” rather than “numerical” effect.
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5 Research interests of participants

Each participant in the workshop was invited to submit a brief summary of their research interests
in advance. These were made available on the workshop webpage and in the lounge during the
workshop.

PETER C. AICHELBURG

Institute for Theoretical Physics, University of Vienna, Austria
pcaich@ap.univie.ac.at

http://www.thp.univie.ac.at/alt/local/gravity/people aichelburg.html

Fine structure phenomena in critical collapse [?] New numerical studies of critical phenom-
ena in black hole formation for the spherically symmetric SU(2)-sigma model (wave maps) coupled
to gravity. An interesting feature of this model is that the nature of the critical behavior depends
on the coupling constant α characterizing the strength of gravitational interaction: for small α
the critical solution is continuously self-similar (CSS), for large α the critical solution is discretely
self-similar (DSS), while in-between there is a region of so called episodic self-similarity where a
competition between the CSS and DSS behaviors is observed. In order to understand better the
character of the CSS/DSS transition we performed high precision computations near the bifurcation
point and found an unexpected fine structure. In this region, given an interpolating family of initial
data parametrized by p, there is an infinite series of critical values pn → p∗ such that for each pn one
has the CSS critical behavior with n episodes, while for p∗ one has the DSS critical behavior. This
is also reflected in the corresponding black hole mass scaling. An explanation of this phenomenon
in the language of dynamical systems theory is conjectured.

News from Critical Collapse: Bondi Mass, Tails and Quasinormal Modes [?] This
research tries to answer the question how critical collapse ”looks from far away”. What are the
characteristic features to be observed? We analyze global aspects of the best studied model: the
self-gravitating massless scalar field in spherical symmetry, however in a compactified context. Our
evolution system is based on Bondi coordinates, the mass function is used as an evolution variable.
Radiation quantities like the Bondi mass and news function are calculated and we find that they
reflect the DSS behavior. Surprisingly, the period of radiation at null infinity is related to the formal
result for the leading quasi-normal mode of a black hole with rapidly decreasing mass. Furthermore,
our investigations shed some light on global versus local issues in critical collapse, and the validity
and usefulness of the concept of null infinity when predicting detector signals.
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ALEXANDER ALEKSEENKO

California State University Northridge
alexander.alekseenko@csun.edu

http://www.csun.edu/˜ama5348

Construction and validation of constraint-preserving boundary conditions for hyperbolic formu-
lations of Einstein’s equations, well-posedness of differential boundary conditions, long term stability
estimates for Einstein’s system, hyperbolic formulations, energy estimates for systems first order in
time second order in space.

Differential constraint-preserving boundary conditions. Consider a vector wave equation
in a bounded domain Ω subject to a differential constraint (indices are raised with the flat metric)

∂tui = ∂l∂lui, ∂iui = 0. (18)

Dirichlet data for system (18) can not be set arbitrary, since not every solution to the wave equa-
tion is automatically divergence-free. Even the “visually divergence free” Dirichlet data, ui|∂Ω =
(curlϕ)i|∂Ω, where ϕj is a vector defined in the neighborhood of the boundary, is constraint-
compatible only in special cases.

Instead, let nj be the unit normal to the (flat) boundary, vectors mj and lj complement nj

to an orthonormal triple. Consider a vector function gj defined on the boundary, with a property
g · n = gjnj = 0, the proposed boundary conditions are ((n × u)i = εpq

i npuq is the usual cross
product)

n× u|∂Ω = g,
∂

∂n
u · n|∂Ω =

∂

∂l
g ·m−

∂

∂m
g · l. (19)

These boundary conditions are constraint-compatible and enforce the constraint through the second
expression in (19).

Long term stability for Einstein’s equations. The first BSSN equation reads (k is the
extrinsic curvature, indices are raised with the inverse spatial metric)

∂0k
i
i = aklikli −DlDla. (20)

Unless the lapse function a is chosen with care, equation (20) is expected to be unstable. For
example, for a spatially independent lapse and zero shift vector, equation (20) yields an estimate

∂tk ≥ 1
3ak

2 which implies that k ≥ [(1/3)
∫ t

0
a(τ)dτ +1/k(0)]−1, or that the solution k is unbounded

in a finite time, which is a well-known example of a coordinate singularity.
Energy estimates for systems first order in time second order in space. The following

is the energy identity for the linearized BSSN system with the densitized lapse (‖ ‖ is the L2-norm)

∂t

[

‖κ‖2 + 36‖∂lϕ‖
2 + ‖Γj − 8∂jϕ‖

2 + ‖A‖2 + ‖
1

2
∂lγ̃ji − (Γ(i − 8∂(iϕ)δj)l‖

2
]

= −6

∫

∂Ω

(
∂

∂n
ϕ)κ−

∫

∂Ω

(
∂

∂n
γ̃ij)A

ij + 2

∫

∂Ω

(Γi − 8∂iϕ)njA
ij .

Partial references. A.Alekseenko [?], A.Alekseenko and D.Arnold [?], L.Lindblom et al [?],
C.Gundlach and J.M.Martin-Garcia [?, ?], N.Tarfulea [?], G.Calabrese et al [?], G.Nagy et al [?].
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JAMES BARDEEN

University of Washington
bardeen@phys.washington.edu

www.phys.washington.edu/∼bardeen/

My focus has been on exploring the potential of tetrad-based formulations for numerical relativity,
with particular emphasis on hypersurface-orthogonal gauges, in which tetrad congruence is kept
orthogonal to the constant-t hypersurfaces. The acceleration of the tetrad congruence is then equal
to the gradient of the lapse, and the extrinsic curvature tensor of the orthogonal three-space is
symmetric. The lapse can be made dynamic, satisfying an equation of the Bona-Masso type, which
induces a dynamical equation for the tetrad acceleration. I argue that the angular velocity of the
spatial triad relative to Fermi-Walker transport should also be made dynamic, rather than being set
to zero. In spacetimes such as Kerr black holes in which there is large differential frame dragging,
triads propagating by Fermi-Walker transport may become highly twisted near the horizon. A simple
dynamic gauge condition for the angular velocity is to assume the angular velocity is the gradient of
a scalar potential. An evolution equation for this scalar potential, and a corresponding dynamical
equation for the triad angular velocity, is proposed which allows twists in the spatial triad to relax
by propagation at light speed away from where they are generated.

Evolution equations based on these gauge conditions can be made symmetric hyperbolic with
a few simple substitutions of constraint equations. Both ”Einstein-Ricci” systems, in which the
primary variables are the Ricci rotation coefficients, and ”Einstein-Bianchi” systems, in which the
components of the Weyl tensor are promoted to independent dynamical variables evolved by the
Bianchi identities, have been considered. All symmetries of the Ricci rotation coefficients and the
Weyl tensor are enforced explicitly, which leads to propagation different from light speed for most
of the ”constraint” and ”gauge” modes. This may be in important ways an advantage for numerical
relativity, particularly in spacetimes with horizons.

So far these systems have been tested on vacuum 1-D spacetimes, Schwarzschild and non-linear
colliding plane waves. In the Schwarzschild case, excellent accuracy and long-term stability can be
obtained with the Einstein-Bianchi system and lapse gauge conditions which produce asymptotically
hyperbolic spacelike hypersufaces. Such hypersurfaces have normals pointing outward relative to the
coordinate grid at the outer boundary as well as at the inner excision boundary. This minimizes the
need for incoming mode boundary conditions, and makes enforcing the constraints at the boundaries
trivial. Stability is most impressive when the lapse gauge conditions give highly superluminal propa-
gation in the vicinity of the event horizon for modes coupling the radial acceleration and longitudinal
extrinsic curvature.

Luisa Buchman and Olivier Sarbach at Caltech are working on an implementation of the 3-D
Einstein-Bianchi system within the framework of the Cornell-Caltech pseudo-spectral code.
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ROBERT BARTNIK

Monash University

• Energy in general relativity:

– quasi-local measures, geometric properties and numerical evaluation.

– Hamiltonian phase space structure

– Positive energy theorems

Numerical relativity in characteristic coordinates:

– structure of the hypersurface equations,

– optimal metric and connection parameters,

– asymptotic structure at null infinity,

– interaction of gravitational waves with a black hole

THOMAS BAUMGARTE

Bowdoin College
tbaumgar@bowdoin.edu

Over the past years I have worked on many different aspects of numerical relativity, including both
the initial value problem and dynamical evolution calculations. I have been particularly interested
in compact binaries [?], and have constructed initial data for both binary neutron stars [?] and
binary black holes [?] in quasicircular orbit. I have worked on reformulations of the ADM equations
for the dynamical evolution of the gravitational fields that have dramatically improved the stability
of their numerical implementations [?, ?]. I have also worked relativistic hydrodynamics [?] for the
dynamical evolution of binary neutron stars. More recently I have studied mixed black hole-neutron
star binaries, and have constructed initial data describing such binaries in quasicircular orbit [?].

LUISA BUCHMAN

Jet Propulsion Laboratory, California Institute of Technology

My research interests are focussed on how to best formulate the Einstein equations, in order to
(eventually) yield accurate, efficient, and long-term stable numerical evolutions of coalescing binary
black holes for projects such as LIGO and LISA. In particular, I have been working on orthonor-
mal frame based approaches. I have performed numerical experiments in 1D with a formulation
which evolves the 24 Ricci rotation coefficients and the tetrad vector components, for an arbitrary
orientation of the timelike congruence generated by the tetrad fields with respect to the constant-
t spacelike hypersurfaces1. Currently, I am implementing an orthonormal frame based Einstein
Bianchi system2,3 in a 3D pseudo-spectral Caltech-Cornell code written by L. Kidder, M. Scheel,
and H. Pfeiffer. In this system, the timelike congruence is explicitly orthogonal to the constant-t
hypersurfaces. The work I am doing is in collaboration with James Bardeen, Frank Estabrook, and
Olivier Sarbach.

References:
1. L. T. Buchman and J. M. Bardeen. Hyperbolic tetrad formulation of the Einstein equations

for numerical relativity. Phys. Rev. D 67, 084017 (2003).
2. F. B. Estabrook and H. D. Wahlquist. Dyadic Analysis of Space-Time Congruences. J. Math.

Phys. 5 1629 (1964).
3. H. Friedrich. Hyperbolic reductions for Einstein’s equations. Class. Quantum Grav. 13 1451

(1996).
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SNORRE H. CHRISTIANSEN

CMA, University of Oslo, P.O. Box 1053 Blindern, NO-0316 Oslo, Norway
snorrec@math.uio.no

http://folk.uio.no/snorrec/

I’m interested in structure-preserving discretizations of partial differential equations. My back-
ground is in finite element discretizations of boundary integral equations for Maxwell’s equations.
More recently I have tried to relate Regge calculus to finite element techniques (especially Whitney
forms) [?], I have developed tools for analyzing the convergence of some non-linear quantities un-
der div-curl control in the Galerkin setting [?], and I have investigated constraint preservation in
discretizations of the Yang-Mills equations [?].

MATTHEW CHOPTUIK

CIAR Cosmology & Gravity Program and University of British Columbia

choptuik@physics.ubc.ca

http://bh0.physics.ubc.ca/ matt/

Full time numerical relativist since 1980. M.Sc. work (UBC 1982) concerned the initial value
problem, corrected a minor error in numerical work by York and Piran, but, more importantly,
was accomplished via an O(N) multi-grid solution with adaptive mesh refinement in one of the
two coordinate directions, and was thus was the first published use in numerical relativity of both
multi-grid and AMR (Choptuik 1986).

PhD (UBC 1986) concerned gravitational collapse in spherical symmetry, a topic which is still
being studied by our research group, although calculations are increasingly often performed in axial
symmetry (2D) or no symmetry (3D).

Once sufficient computer resources and visualization/analysis capacity were available, discovery
of critical collapse in the early 1990’s (Choptuik 1993) was the immediate and direct result of previous
work to implement full Berger & Oliger AMR (1984) for spherical collapse in 1987-1988 in a vain
attempt to use AMR to ameliorate coordinate problems encountered at late times in collapse (“lapse
collapse”, for example).

Starting in the mid-90’s, and largely due to work with (and mostly by!) Steve Liebling and
Eric Hirschmann, our group’s focus switched from spherical (1D) to axial (2D) symmetry; Pretorius
joined this effort in 2000, and, for his PhD thesis (UBC 2002) demonstrated fully critical collapse
of a massless scalar field without restriction to spherical symmetry; follow-up work included non-
spherically symmetric, but axially-symmetric critical solutions.

Work in general relativistic hydrodynamics started with the UT Austin PhD of David Neilsen
(1999), followed by Scott Noble (UT Austin PhD, 2003) and Ignacio (Inaki) Olabarrieta (UBC
PhD 2004) and Martin Snajdr (UBC PDF 2005-present) and primarily has focused on the rich phe-
nomenology of critical collapse with a perfect fluid. In the near term, our group will be concentrating
a great deal on 3D calculations with perfect fluids, with an aim to work on various aspects of neutron
star physics and astrophysics, including inspiraling collisions and supernovae explosions.

Other pertinent interests include the design and implementation of high level software tools
for our own use as well as the community’s, to the extent that others want to use them. This
inlcudes the special purpose language RNPL (Robert Marsa, UT Austin PhD 1995) as well as
visualization/analysis tools xvs (Choptuik) and DV (Pretorius & Choptuik).

In general, as physicists, group members are most interested in obtaining new solutions of the
Einstein equations (as well as those for whatever matter fields are present), and then understanding,
so far as possible, the “physics” that underlies the results. Our work is characterized by an exclusive
use of finite differencing (minimum second order if at all possible), as well as, following LF Richardson
(Richardson 1910), an agressive use of convergence testing so that one ultimately can ultimately
tackle the most general and difficult problems where calibration with a known (closed form) solution
is either impossible or, more likely, relatively meaningless.
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HELMUT FRIEDRICH

Albert-Einstein-Institut
hef@aei.mpg.de

My main interest in general relativity is concerned with the structure of gravitational fields in
the large, with their conformal and their asymptotic structure, and with concepts of gravitational
radiation from isolated systems. On the technical side this amounts to

− studies of the structure of the field equations under various conditions,
− the analysis of different representations of the field equations,
− the understanding of the ‘conformal structure’ of the field equations,
− the analysis of the constraints and the structure of initial data,
− the analysis of gauge conditions and their long time behavior,
− the reduction of initial and initial-boundary value problems for the
Einstein and the conformal Einstein equations,
− the analysis of the interrelations of the systems involved in the reduction of
initial or of initial-boundary value problems for Einstein’s field equations,
− local, semi-global, and global existence proofs for solutions of Einstein’s field
equations under various assumptions.
May main goals are to control the evolution of gravitational fields in the large analytically and to

reduce the problem of calculating entire space-times, including their asymptotic structure and their
radiation content, to the calculation of solutions to finite Cauchy problems solely from the Cauchy
data. Parts of this work are discussed in the survey articles [?, ?]

RICHARD S. FALK

Department of Mathematics, Rutgers University
falk@math.rutgers.edu

http://www.math.rutgers.edu/ falk

My research interest in numerical relativity involves trying to use simpler model problems with
some of the same features to understand why standard numerical methods for the Einstein equa-
tions fail and to help design methods that overcome these problems. One particular issue that I
am considering is in what sense to satisfy the constraint equations as time evolves. Although the
constraint equations are automatically satisfied by the exact solution if they are satisfied initially,
these equations are complicated, so in general will not be satisfied by a numerical approximation.
One might hope, however, to design numerical schemes which preserve appropriate approximations
to these identities. Such issues arise in a much simpler context in the solution of Maxwell’s equa-
tion, where solutions which are initially divergence free remain so without explicitly enforcing this
condition as an additional constraint. Good numerical methods for Maxwell’s equations preserve a
discrete divergence free condition on the approximate solution again without explicitly enforcing it.
A related question is what effects the constraints have on the overall stability of the problem.

I am also interested in studying the use of the Regge calculus, a discrete version of general
relativity, that has previously been used as a numerical approximation to the Einstein equations.
The Regge calculus may be viewed as a type of finite element method and I am interested in exploring
this connection with the aim of additional understanding and improvement of this approach to
numerical relativity.
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JOERG FRAUENDIENER

University of Tuebingen
joerg.frauendiener@uni-tuebingen.de

I am interested in numerical implementation of Friedrich’s conformal field equations. We are
currently working on a 3D implementation to study the incidence of gravitational waves on a black
hole. Recent investigations also include the analysis of constraint divergence in the Bianchi system.
Furthermore, we are developing and testing methods to use discrete differential forms or even more
general notions of discrete geometry in GR. We are currently investigating spherically symmetric
and plane wave space-times.

DAVID GARFINKLE

Oakland University
garfinkl@oakland.edu

http://www.oakland.edu/physics/physics-people/faculty/Garfinkle.htm

Much of my recent research in numerical relativity has been on (i) properties of singularities, (ii)
critical gravitational collapse and (iii) cosmic censorship.

Singularities occur at the centers of black holes and at the big bang. Due to the singularity
theorems, we know that singularities form in a wide range of circumstances; but these theorems give
us very little information about the nature of singularities. To find the nature of singularities, I
have performed numerical simulations of the formation of singularities. These simulations were first
done in the case of symmetry; but recently I have done simulations of the case with no symmetry.
The results support the so called BKL conjecture that the approach to the singularity is locally
homogeneous and oscillatory.

Critical collapse, as first found by Choptuik, is the scaling properties of gravitational collapse
at the threshold of black hole formation. I have investigated several aspects of this phenomenon
including (i) scaling of tidal force for systems that just barely fail to form a black hole, (ii) critical
gravitational collapse in spacetime dimensions other than 4, (iii) closed form solutions describing
critical gravitational collapse (iv) critical gravitational collapse of a massive vector field and (v) an
analog of critical gravitational collapse in Ricci flow.

Cosmic censorship is the question of whether the singularities that form in gravitational collapse
are hidden inside black holes. Recently, a system of a scalar field with negative potential energy
had been proposed as a counterexample to cosmic censorship. However, I performed numerical
simulations of this system and showed that it is not a counterexample.

In addition to these studies, I have also (i) investigated the use of harmonic coordinates as a
method for the numerical simulation of Einstein’s equation and (ii) investigated (along with Pretorius
and Lehner) the properties of the horizon of an unstable black string.
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CARSTEN GUNDLACH

School of Mathematics, University of Southampton
cg@maths.soton.ac.uk

www.maths.soton.ac.uk/cg/

I am trying to find ADM-like formulations of the Einstein equations, together with gauge choices
and boundary conditions that make the initial-boundary value problem well-posed. Mostly I have
been using energy methods to investigate well-posedness, and so I am looking for symmetric hyper-
bolic systems, in particular second-order in space and first-order in time ones. I am also trying to
understand better how to define hyperbolicity for such systems.

More recently, I have become interested in finite-differencing methods for second-order in space
systems, using mostly discrete energy methods. I am interested in boundary conditions in the
presence of a shift vector. It should not be necessary to impose more or fewer boundary conditions,
depending on the normal component of the shift. I am investigating these issues in the wave equation
and electromagnetic toy models for gravity.

With Ian Hawke, I am just starting to look at gravitational waves from neutron star mergers and
core collapse, with the twin aims of going beyond barotropic equations of state, and of improving
gauge choices and boundary conditions.

I have worked a lot on critical phenomena in gravitational collapse, mostly by constructing
critical solution using a self-similar ansatz, and then using perturbation theory to calculate critical
exponents. Critical collapse in spherical symmetry is well-understood now, but we don’t know much
in less symmetry. In particular, interesting things will happen when one looks for the black hole
threshold for rotating initial configurations. I am not doing rotating collapse simulations, but hope
someone else will soon!

IAN HAWKE

School of Mathematics, University of Southampton
ih@maths.soton.ac.uk

http://www.maths.soton.ac.uk/Staff/Hawke

My primary interest are the numerical simulation of the gravitational waves emitted by col-
lapsing stars. Towards this end I am primarily interested in wave extraction ([?]), particularly
Cauchy-characteristic extraction, simulating hydrodynamics, particularly with high resolution shock
capturing (HRSC) methods ([?]), formulations of Einstein’s equations for numerical relativity ([?]),
and technical improvements to computational code including mesh refinement ([?]) and multiple-
patch evolutions ([?]).
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RALF HIPTMAIR

Seminar for Applied Mathematics, ETH Zürich
hiptmair@sam.math.ethz.ch

http://www.sam.math.ethz.ch/~hiptmair

Discrete differential forms. Discrete differential forms can be regarded as finite elements
for differential forms: they provide piecewise polynomial p-forms with respect to a piecewise linear
triangulation of the underlying manifold. Their simplest representatives on simplicial complexes are
known as Whitney forms. In this case, they can be regarded as a way to extend p-cochains to proper
p-forms.

For any polynomial degree a judicious construction of discrete differential forms can ensure that
the exterior derivative d can be restricted to the discrete forms. The resulting discrete co-homology
becomes isomorphic to the deRham co-homology.

Discrete differential forms allow the straightforward discretization of physical laws that can be
expressed by means of differential forms, e.g. Maxwell’s equations. The discrete model preserves
algebraic identities arising from d ◦ d = 0 as well as degrees of freedom arising from the topology of
the triangulated manifold.

Discrete Hodge operators. Metric-dependent constitutive laws defy a canonical treatment
in the context of discrete differential forms, because their formulation relies on the so-called Hodge
operator, which lacks a clear discrete counterpart. Yet, a few fundamental algebraic requirements
can be stated that have to be satisfied by meaningful discrete Hodge operators. It turns out that
many discretization schemes ranging from primal and dual finite elements to finite volume methods
and Galerkin approaches fit this framework and can be regarded as particular realizations of discrete
Hodge-operators.

Discrete Lie derivatives. Quasistatic models for magnetic diffusion in conducting fluids lead
to initial boundary value problems of the form

d ⋆ dω = ±
d

dt
(⋆ω) + Lv(⋆ω) ,

where ω is a time-dependent p-form and Lv is the Lie derivative with respect to a given vector field
v. The issue is how to incorporate the Lie derivative into the calculus of discrete differential forms.
How to do this on a semi-discrete level and in a fully discrete Lagrangian framework is research in
progress.

Einstein-Dirac equations in spherical symmetry. The Einstein-Dirac equations for a 2-
fermion system in the spherical symmetric case lead to a linear wave equation that propagates
non-linear constraints. These arise from the conservation of total charge and ADM-mass. Current
research aims at developing a stable numerical scheme that is charge conserving and prevents a drift
of the mass.
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HEINZ KREISS

Institute for Applied Mathematics, Trasko-Storo,Sweden
hokreiss@nada.kth.se

There is a tendency to write the equations of general relativity as a first order symmetric sys-
tem of time dependent partial differential equations. However, for numerical reasons, it might be
advantageous to use a second order formulation like one obtained from the ADM equations.

I have been involved in the study of the mathematical properties of the ADM equations and the
study of the numerical methods for second order hyperbolic systems of partial differential equations.

H.-O. Kreiss and O.E. Ortiz, Some Mathematical And Numerical Questions Connected With
First And Second Order Time Dependent Systems Of Partial Differential Equations, Lecture Notes
of Physics, 604, 2002.

H.-O. Kreiss, N. A. Petersson and J. Yström, ”Difference approximations for the second order
wave equation”, SIAM J. Numer. Anal., v. 40, pp. 1940–1967, 2002.

H.-O. Kreiss, N. A. Petersson and J. Yström, ”Difference approximations of the Neumann prob-
lem for the second order wave equation”, SIAM J. Numer. Anal., v. 42, pp. 1292–1323, 2004.

H.-O. Kreiss and N. A. Petersson, ”A second order accurate embedded boundary method for the
wave equation with Dirichlet data”, Lawrence Livermore National Lab, UCRL-JRNL 202686, (to
appear in SIAM J. Sci. Comput.), 2004.

B. Szilágyi, H.-O. Kreiss, and J. Winicour, Modeling the Black Hole Excision Problem, To appear.

PABLO LAGUNA

Penn State
pablo@astro.psu.edu

Numerical simulations and gravitational wave emission of excised black holes, extreme-mass-
ratio binaries and tidal stellar disruptions by a massive black hole. Applications of the isolated and
dynamical horizon framework to numerical relativity.

LUIS LEHNER

Lousiana State University
lehner@lsu.edu

http://www.phys.lsu.edu/faculty/lehner

Analysis both at numerical and analytical levels of Einstein equations (in Cauchy and character-
istic forms) and their actual implementation to study strongly gravitating systems.
At the analytical level the understanding how different formulations of the the equations behave
and the interplay of constraints and boundary conditions in the future evolution of a given system.
In particular to learn how to exploit the freedom in the theory to single out re-formulations which
might be better behaved at the implementation level and the coordinate freedom to simplify tracking
the system. At the numerical level the search for a robust implementation of the equations which
requires the use of carefully developed algorithms, non-trivial coordinate charts and the use of adap-
tive gridding techniques. At the application level my interests range from astrophysical systems
–to understand their process and possible gravitational wave output– to investigations of higher
dimensional scenarios –which arise naturally in string theory–. I collaborate on different aspects of
the mentioned problems with M. Choptuik, D. Garfinkle, S. Liebling, F. Pretorius, O. Reula and M.
Tiglio.
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RANDALL J. LEVEQUE

University of Washington
rjl@amath.washington.edu

http://www.amath.washington.edu/∼rjl

I work on finite volume methods for solving hyperbolic systems of equations, software imple-
menting these methods, and various applications where these problems arise. An on-going project
is the further development of the CLAWPACK (Conservation LAW PACKage) software for solving
hyperbolic systems [?]. This has recently been extended to a version for two dimensional manifolds
specified in terms of a general metric, in work with James Rossmanith and Derek Bale [?]. These
high-resolution methods are based on solving Riemann problems orthogonal to each face of a grid
cell in a local coordinate system and using the resulting waves to update the solution in nearby
grid cells. They include slope limiters that are particularly useful for problems with discontinuous
solutions, such as shock waves, but that can also improve accuracy of smooth solutions by reducing
dispersive effects. Outflow boundary conditions are often particularly easy to implement with these
methods. Adaptive mesh refinement is also incorporated. More information can be found at
http://www.amath.washington.edu/∼claw/clawman.html

FRANS PRETORIUS

Caltech
fransp@tapir.caltech.edu

http://www.tapir.caltech.edu/∼fransp/

Physics of compact objects: A significant portion of my present research effort is dedicated toward
studying binary black hole systems and black hole/boson star interactions. The corresponding
3D/2D-axisymmetric code uses an evolution scheme based on generalized harmonic coordinates, a
coordinate domain compactified to spatial infinity to facilitate the imposition of physically correct
outer boundary conditions, and (dynamical) excision to deal with the singularities inside of black
holes [?]. The numerical solution method is finite difference, with Berger and Oliger style (parallel)
adaptive mesh refinement. Current matter sources are real and complex scalar fields, though a long
term goal is to include fluid and electromagnetic fields.

Horizons in higher-dimensional spacetimes: The uniqueness theorems in 4D Einstein gravity state
that the only stationary (vacuum) black hole solutions are the Kerr family; furthermore, these black
holes are stable under dynamical perturbations. The situation in higher dimensional (string-theory
motivated) spacetimes is much richer, with larger classes of black “objects” including black holes,
strings, branes and rings, and interestingly many of these objects are not stable. A long-standing
project of collaborators and myself is to discover the end-state of the evolution of a dynamically
perturbed unstable black string. Our initial effort [?] hinted that the string my “fracture” into a
sequence of spherical black holes, thought the code failed due (we think) to bad coordinate conditions
at late times before we could ascertain the final state. A new effort is underway to include gauge
conditions that are better able to follow the late-time dynamics of the spacetime, as well as use a
better-behaved formulation of the field equations.

Critical phenomena in gravitational collapse: I am involved in an ongoing effort to explore the
critical behavior that occurs at the threshold of gravitational collapse, in particular that of scalar
field and pure gravitational wave sources. The threshold solutions, being discretely self-similarity
in nature, are challenging to solve for numerically due to the larger range of relevant spatial and
temporal scales that must be resolved during an evolution. Thus, aside from the fascinating physical
aspects of the problem, critical collapse is an excellent test bed for numerical solution methods for
the Einstein field equations.
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OSCAR REULA

FaMAF, Univ. Nac. Córdoba, Argentina
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Numerical and analytic questions about evolution of hyperbolic systems. In particular: a) sys-
tems with constraints which are not very well preserved along evolution. b) problems with boundary
conditions which are physically interesting, but nevertheless not of the maximally dissipative type.
c) Evolution on manifolds with non-trivial topology and therefore where several coordinate charts,
and therefore grids, are needed.

JAMES A. ROSSMANITH

University of Michigan
rossmani@umich.edu

http://www.math.lsa.umich.edu/∼rossmani

An important goal in astrophysics is to model diverse phenomena such as the accretion of matter
onto black holes and the interaction of colliding black holes. Although the metric is dynamically im-
portant in the black hole collision problem, while remaining relatively fixed in the accretion problem,
a key piece in both of these examples is the evolution of the fluid variables. Under some simpli-
fying assumptions, the fluid variables evolve according to the relativistic hydrodynamic equations,
which form a system of hyperbolic balance laws that are strongly nonlinear and generically exhibit
shock formation. In order to accurately simulate the evolution of such fluids, several types of nu-
merical methods have been proposed, including finite difference, pseudo-spectral, smoothed-particle
hydrodynamic, and various high-resolution shock-capturing methods. Although these methods each
have their own advantages, perhaps the class of methods that has received the most attention in
recent years is that of high-resolution shock-capturing schemes such as those based on Godunov,
ENO (essentially non-oscillatory), and central schemes (see Font [?] for a detailed review of these
approaches).

In our research, we are exploring an alternative to the high-resolution schemes currently in use in
the astrophysics community. We are considering a class of methods known as residual distribution
schemes, which are based on a truly multi-dimensional extension of the scalar upwind scheme (see
Abgrall [?] for a review). The method is naturally formulated on triangular grids, making it an
ideal approach for flows in complex geometries such as those encountered in astrophysical flows near
compact objects. Residual distribution (RD) schemes are conservative and shock-capturing, and
high-order can be achieved entirely through the use of compact stencils.

RD methods can be applied to balance laws of the form:

∂

∂t
q + ~∇ · ~F = ψ(q, ~x), (21)

where ~F = [f1, f2, f3] is the flux tensor and q, f i, ψ ∈ lRm are the vectors denoting the conserved
variables, flux functions, and source term, respectively. Space is discretized with a mesh of triangles
(2D) or tetrahedrals (3D) that consists of elements, Ti, and nodes ~xj . On each node at each time
level, we define an approximate solution: Qn

j ≈ q(~xj , t
n). The approximate total residual in element

Ti is given by

φTi ≈

∫ ∫ ∫

Ti

[

~∇ · ~F − ψ(q, ~x)
]

dV. (22)

This residual is then distributed to the nodes of element Ti through a multi-dimensional upwinding
procedure. The approximate solution is updated by summing up all the contributions to node j:

Qn+1
j = Qn

j −
∆t

Vj

∑

T :j∈T

φTj , (23)
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where Vj is the volume of the median dual and φTj is the part of the total residual in element T
that is distributed to node j. Nonlinear limiters are employed to guarantee that the methods are
(essentially) non-oscillatory near shocks and high-order in smooth regions.

Further development of RD schemes is still an active area of research. Recently, Abgrall and Roe
[?] have developed third and fourth-order RD schemes for scalar problems in the steady-state. Time
accuracy is still under research; perhaps the most promising strategy is that proposed by Abgrall
and Mezine [?]. The goal of this research is to develop additional improvements to the current RD
schemes and to apply them to problems in astrophysical flows. Some preliminary results in this
direction are presented in [?].

OLIVIER SARBACH

California Institute of Technology
sarbach@caltech.edu

I am currently working on the numerical implementation of a curvature-based formulation of
General Relativity. In this formulation the geometry of spacetime is described by an orthonormal
tetrad field, connection coefficients and the tetrad components of the Weyl tensor. When aug-
mented with suitable gauge conditions the system gives rise to a first order symmetric hyperbolic
evolution. Furthermore, using the work by Friedrich and Nagy [?], it is possible to obtain a well
posed initial-boundary value formulation via maximally dissipative boundary conditions. This offers
the possibility of constructing highly accurate discretization schemes for which numerical stability
can be guaranteed in the linearized case. I have started looking at pseudo-spectral discretization
methods which should be well-suited for the vacuum equations where the solutions are expected to
be smooth. This work is in collaboration with Gabriel Nagy, Jim Bardeen and Luisa Buchman.

I am also studying the evolution of homogeneous, spherically symmetric bubble spacetimes in
five-dimensional Kaluza-Klein theories. These spacetimes, which are everywhere regular and asymp-
totically approach the Kaluza-Klein vacuum, have attracted some interest in the string community
since their mass is not necessarily positive. Furthermore, unlike four dimensional vacuum spacetimes,
where there exists no non-static spherically symmetric configurations, bubble spacetimes admit non-
trivial dynamical degrees of freedom. Indeed, we have found [?, ?] rich dynamical scenarios including
the formation of black strings and critical phenomena. The bubble configurations provide a nice toy
model problem of physical interest where several aspects of the binary black hole problem, like outer
boundary conditions, gauge conditions, extraction of invariant quantities, the formation of apparent
horizons, etc., can be analyzed. This is work in collaboration with Luis Lehner.

I am also working on the initial-boundary value formulation of Einstein’s field equations. In
numerical relativity one usually solves the field equations on a spatially truncated domain with
artificial boundaries. Boundary conditions have to be specified in such a way that they ensure
constraint propagation, incorporate some physics (for example, in many application it is desirable
that the boundary conditions minimize the reflection of gravitational radiation) and are stable in
the sense that they yield a well posed initial-boundary value problem. Besides the formulation in [?]
which is based on a tetrad representation of the field equations, no boundary conditions satisfying
all the above properties have been found for the more commonly used metric based formulations.
The major difficulty lies in the fact that for first order hyperbolic systems the conditions requiring
constraint propagation typically yield boundary conditions in the form of differential equations
instead of the more familiar algebraic conditions for which much is known in the literature. In order
to understand the structure of these boundary conditions Oscar Reula and I recently analyzed a
related model problem in electromagnetism and derived [?] a well posedness result using methods
from semigroup theory. Currently, I am working on the generalization of our result to the case of
the Einstein equations.
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University of Maryland
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Analysis of time-dependent problems governed by linear and nonlinear PDEs; the development
of novel high-resolution algorithms for the approximate solution of these problems, including finite-
difference, finite volume and spectral methods, and the interplay between the theory and computa-
tional aspects of such approximate methods.

NICOLAE TARFULEA

Purdue University Calumet
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My general research interests include the areas of partial differential equations, numerical analy-
sis, and general relativity. In recent years, most of my effort has been directed toward hyperbolic for-
mulations of Einstein’s equations, constraint preserving boundary conditions for such formulations,
and the initial data problem. My work on this subject has been motivated by the necessity to derive
consistent boundary conditions and initial data for various hyperbolic formulations of Einstein’s
equations that lead to long term stable and accurate three dimensional simulations in numerical
relativity. Most of my results are contained in my Ph.D. thesis (“Constraint Preserving Boundary
Conditions for Hyperbolic Formulations of Einstein’s Equations,” University of Minnesota, 2004)
and M.A. paper (“On the Hamiltonian Constraint Equation in General Relativity,” Penn State
University, 2001), both under the advisership of Prof. Douglas N. Arnold. My current research
program is a natural continuation of the work done in my Ph.D. thesis. In particular, I am inter-
ested in extending some results on constraint preserving boundary conditions obtained in the case
of polyhedral domains for the linearized (about the Minkowski spacetime) Einstein equations to the
more general case of curvilinear domains. I am also interested in studying the boundary conditions
problem for Einstein’s equations linearized around other interesting solutions, such as Schwarzschild
spacetime. Numerical implementations of these results is another important direction of current and
future work.

MANUEL TIGLIO

Louisiana State University
tiglio@cct.lsu.edu

Numerical evolutions of Einstein’s equations, mostly involving black holes and neutron stars,
and associated mathematical, numerical and scientific computing issues. High order finite difference
methods, multi-block simulations, boundary conditions for Einstein’s equations, gauge conditions,
methods to supress constraint violations.
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My work in numerical relativity began with development of a code based upon the characteristic
initial value problem1, in which spacetime is foliated by light cones (retarded time) rather than
by Cauchy hypersurfaces (which define a standard time coordinate). This allows a description of
infinity as a compactified boundary (Penrose boundary) where the emitted gravitational radiation
can be unambiguously computed. This code has been successful treating a generic single black hole
spacetime and for the outer region of a binary black hole. But the characteristic approach fails in the
inner region of a two black hole spacetime because of the appearance of caustics in the light cones.
However, an exterior characteristic evolution can (in principle) be matched to an interior Cauchy
evolution to supply the outer Cauchy boundary condition and and compute the emitted waveform.
This matching has be successful in many test cases but not in a general 3-dimensional black hole
spacetime. The difficulty seem to arise from the lack of a good computational/analytical treatment
of the outer boundary condition for the Cauchy codes. This has turned my recent interest to the
Cauchy initial-boundary value problem (IBVP) in general relativity.

We have developed a version of this IBVP in harmonic coordinates for which the IBVP is well-
posed for homogeneous or small boundary data. A code based upon this harmonic formulation has
been implemented and successfully tested on model problems2. Initial progress has been made on
the analytic/computational issues necessary to make the code applicable to black holes3.4.

1 “Characteristic Evolution and Matching”, J. Winicour, Living Reviews 2001.
2 B. Szilágyi and J. Winicour, Phys. Rev., D68, 041501 (2003).
3 “Some mathematical problems in numerical relativity”, M. Babiuc, B. Szilágyi and J. Winicour,

gr-qc/0404092.
4 “Modeling the Black Hole Excision Problem”, B. Szilágyi, H-O. Kreiss and J. Winicour, gr-

qc/0412101

RAGNAR WINTHER

Centre of Mathematics for Applications, University of Oslo, Norway
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Most of my research during the last years has been focused on numerical methods for partial
differential equations, in particular theory for finite element methods. I have also worked on theory
and numerical schemes for nonlinear hyperbolic conservation laws. Central themes of my activity
on finite element methods have been mixed methods, saddle point systems, preconditioning and
iterative schemes.

Two of my recent projects appear to be related to numerical relativity. In a joint paper with
Snorre Christiansen we have performed numerical studies of a version of the Yang-Mills system.
In particular, we investigated how the nonlinear constraints, preserved exactly by the equation
itself, behaves for different numerical schemes. The conclusion was that unless special constraint
preserving discretizations are used, a substantial drift of the constraints will take place. This strongly
suggests that also for numerical solution of the Einstein equation, formulated as an evolution system,
constraint preserving schemes should be used.

In a joint effort with Douglas Arnold and Richard Falk we have used ideas from differential
forms and discrete differential complexes to construct stable finite element schemes, derived from
the Hellinger–Reissner variational principle, for linear elasticity. A key tool in our proach is the
study of discrete analogs of the so called “elasticity complex.” This complex involves a second order
differential operator, characterizing divergence free symmetric matrix fields, and this operator is
closely related to a linearizion of the spatial operator occurring in the evolution system derived from
the Einstein equation. Therefore, it may be possible that there is link between mixed finite element
methods for elasticity and numerical schemes for the Einstein system.


