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Abstract

We describe a statistical hypothesis test of a possible signal in the presence of nui-
sance parameters that are motivated by problems arising in high energy physics. Our
approach is based on higher order likelihood inference to tail areas in the presence of
nuisance parameters, using the third order approximations. Practical examples from
particle physics are outlined, and simulation studies show that the third order likelihood
based approximations provide nice solutions and are a most promising method for the
examples.

1 Introduction

In high energy physics (HEP) experiments looking for some rare or perhaps non-existent
process, the primary measurement involves counting particle physics interactions of inter-
est, called ”events”. Parameters that are not of physical interest or not observable to the
experimenter appear unavoidably due to the necessary calibration of the measuring appa-
ratus. The uncertainty in the mean rate of background events contributes an uninteresting
nuisance parameter. We consider the hypothesis test of a background-only null hypothesis
in the presence of uncertainty in the background. The method used here is provided by the
observed likelihood function along with the associated p-value function obtained to a high
order approximation.

In Section 2 we give out some background notation, introduce the notion of profile
likelihood, and higher order approximations. In Section 3 we illustrate the third order
p-value function approach in models with nuisance parameters. Section 4 shows....

2 Third order p-values from Profile Likelihood

2.1 Notation

Suppose the observations y come from a model with probability density or mass function
f(y; θ), where θ = (ψ, λ) is q-dimensional. Here, ψ is the parameter of interest, and λ is
the nuisance parameter with (q− 1) dimensions. The likelihood function is proportional to
f(y; θ) only up to an arbitrary multiple depending on y but not θ. That is,

L(θ) = L(θ; y) = c(y)f(y; θ) (1)

Consider a random sample y
˜

= (y1, . . . , yn) of independent observations with each yi follow-

ing the model f(y; θ). The likelihood function is then proportional to
∏

f(yi; θ). Therefore,
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the log-likelihood function becomes a sum of independently and identically distributed com-
ponents

l(θ) = l(θ; y) =
∑

l(θ, yi) (2)

The maximum likelihood estimator θ̂ is the solution to the score equation

l′(θ̂) = 0 (3)

For further information, the observed Fisher information function j(θ) is the curvature of
the log-likelihood

j(θ) = −l′′(θ) (4)

and the expected Fisher information is the model quantity

i(θ) = E{−l′′(θ)} (5)

The normal approximation to the square root of the likelihood ratio is often considered
more accurate in the tails, and is called first order approximations because the error in the
approximation is O(n−1/2). That is,

r(θ) = sign(θ̂ − θ)[2{l(θ̂)− l(θ)}]1/2 ∼̇ N(0, 1) (6)

2.2 Profile Likelihood

The basic idea of profile likelihood is rather straightforward. Instead of the inference based
on full likelihood functions with both parameter of interest and nuisance parameters in-
volved, eliminating nuisance parameters might be desirable. The profile likelihood function
is thus defined as

Lp(ψ) = L(ψ, λ̂ψ) (7)

where λ̂ψ is the restricted maximum likelihood estimate obtained by maximizing the likeli-
hood function over the nuisance parameter λ with ψ fixed. The first order approximation
of the previous section generalizes to

r(ψ) = sign(ψ̂ − ψ)[2{lp(ψ̂)− lp(ψ)}]1/2 ∼̇ N(0, 1) (8)

2.3 3rd Order Approximations from Profile Likelihood

The first order approximations can be improved to the third order, i.e. with relative error
O(n−3/2), using the so-called r∗ approximation

r∗(ψ) = r(ψ) + 1/{r(ψ)} log{Q(ψ)/r(ψ)} (9)

where Q is a likelihood-based statistics and a generalization of the Wald statistics (θ̂ −
θ)j1/2(θ̂), ....

The approach to third-order likelihood theory involves two distinct steps in dimensional
simplification of the variable being examined. The first step can be described as to find an
appropriate reparameterization and obtain a canonical interest parameter. The second step
is a subsequent reduction by marginalisation from the canonical interest parameter to the
dimension 1 of a separate component of interest.

Again assume q-dimensional parameter θ = (ψ, λ) and λ is (q − 1)-dimensional. ψ is
the scalar parameter of interest, while λ is the nuisance parameter. As we said above for
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the inference concerning ψ we need to find an appropriate reparameterization and obtain
a canonical interest parameter, say ϕ, and then a likelihood function appropriate to the
component parameter. It has been shown in [3] that in a full exponential family model,
the canonical parameter can be obtained by differentiating the log-likelihood function with
respect to the minimal sufficient statistic, say t. And the approximation is completed
through the profile likelihood function. Please refer to [1], [2], [3], and [4] for details and
the derivation of the following r∗ approximation formulas.

The result of the third order approximation r∗ is given above by (9)

r∗(ψ) = r(ψ) + 1/{r(ψ)} log{Q(ψ)/r(ψ)}
where r(ψ) is the likelihood root based on profile likelihood function of first order approxi-
mation

r(ψ) = sign(ψ̂ − ψ)[2{lp(ψ̂)− lp(ψ)}]1/2

and

Q(ψ) =
|l;t(θ̂)− l;t(θ̂ψ) lλ;t(θ̂ψ))|

|lθ;t(θ̂)|
· |jθθ(θ̂)|1/2

|jλλ(θ̂ψ)|1/2
(10)

= {v(θ̂)− v(θ̂ψ)}σ̂−1
v (11)

where

v(θ) = eT
ψϕ(θ), (12)

eψ = ψϕ′(θ̂ψ)/|ψϕ′(θ̂ψ)|, (13)

σ̂2
v = |j(λλ)(θ̂ψ)|/|j(θθ)(θ̂)|, (14)

|j(θθ)(θ̂)| = |jθθ(θ̂)|ϕθ′(θ̂)|−2, (15)

|j(λλ)(θ̂ψ)| = |jλλ(θ̂ψ)||ϕλ′(θ̂ψ)|−2 (16)

Starting from the log-likelihood function l(θ; y) with canonical parameter ϕ and the observed
Fisher information j(θ), the key step in the calculation, values of Q, is not very difficult to
implement algorithmically as we will show with examples in the next section.

3 The Signal Test

The case without nuisance parameters has been discussed fully in [1], including the recom-
mended exact mid-p-value function, and p-value functions from both the first order approx-
imation r and third order approximation r∗. We illustrate the method of the third order
approximations from the profile likelihood using the examples of looking for rare particles
with uncertainty in the background.

3.1 Poisson signal with Poisson noise: PP-model

Assume the signal measurement is a Poisson count x with mean µ+λ, and the background
estimate is obtained from an independent Poisson count y with mean τλ. The estimated
precision of the background gives us a value of τ . Then Poisson signal with Poisson noise
Model taken from [1] is given by

X ∼ Pois(µ + λ), Y ∼ Pois(τλ), τ known(> 0)
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The background rate is assumed unknown and thus considered as a nuisance parameter.
The detailed procedure to calculate the r∗ approximation is outlined in [1].

Figure 1 compares the p-value function using the mid-p-value assuming the background
rate is known with the p-value from Φ(r∗) with background error adjustment. Both figures
assume x = 25, y = 6.7(??), and a background error of ±1.75. The p-value for testing µ = 0
is 0.00468, allowing for the uncertainty in the background, whereas 0.00038 ignoring this
uncertainty.
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Figure 1: Comparison of the p-value functions computed assuming the background is known
and using the mid-p-value with the third order approximation r∗.

Compared with the inference for the difference between two Poisson means, statistical
inference about the ratio of two Poisson means is satisfactorily solved using the binomial
distribution when the background imprecision is ignored. If a nuisance parameter is also
included, the signal test can be implemented by modeling the mean of x as αλ, say, and
testing the value α = 1. Numerical result shows that the p-value for testing α = 1 is exactly
the same as the p-value for testing µ = 0, which is consistent with what we expect.

3.2 Poisson signal with Normal noise: PN-model

As a second example, assume that the background is modeled as an independent Normal
distribution rather than Poisson. Then a reasonable model can be described as

X ∼ Pois(µ + λ), Y ∼ N(τλ, τλ), τ known(> 0).

Following the similar steps as done with the PP-Model yields the third order r∗ approxi-
mation. First of all, the log likelihood function is given by

l(µ, λ) = x log(µ + λ)− 1
2τλ

y2 − (µ + λ)− 1
2

log λ− τ

2
λ (17)

Let θ = (µ, λ)T . The canonical parameter is notated by ϕ = (log(µ+λ),− 1
2τλ)T . The m.l.e.

of θ is given by

{ µ̂ = x− λ̂

λ̂ = −1+
√

1+4y2

2τ

.
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It is also possible to find the restricted m.l.e. λ̂µ analytically. Instead, the calculation is
completed by Newton-Raphson method.

Other necessary ingredients are

eT
ψ = (µ + λ̂µ,−2τ λ̂2

µ)/
√

(µ + λ̂µ)2 + 4τ2λ̂4
µ (18)

v(θ̂) = ((µ + λ̂µ) log(µ̂ + λ̂) + λ̂2
µ/λ̂)/

√
(µ + λ̂µ)2 + 4τ λ̂4

µ (19)

v(θ̂ψ) = ((µ + λ̂µ) log(µ + λ̂µ) + λ̂µ)/
√

(µ + λ̂µ)2 + 4τ λ̂4
µ (20)

and finally
Q = (v(θ̂)− v(θ̂ψ))/σ̂v (21)

with

|j(θθ)(θ̂)| = 4τ2(
y2

τ
λ̂− λ̂2

2
) (22)

|j(λλ)(θ̂ψ)| = [(µ + λ̂µ)(2τ λ̂2
µ)]2 · | x

(µ + λ̂µ)2
+

y2

τ λ̂3
µ

− 1

2λ̂2
µ

|/[(µ + λ̂µ)2 + (2τ λ̂)2] (23)

The likelihood root is

r = sign(Q)
√

2[l(µ̂, λ̂)− l(µ, λ̂µ)] (24)

The third order approximation to the p-value function is Φ(r∗), where

r∗ = r + (1/r) log(Q/r) (25)

Figure 2 shows the p-value function using the mid-p-value assuming the background
rate is known with the p-value from Φ(r∗) with background error adjustment, provided
that x = 25, y = 6.7, and a background error of ±1.75. The p-value for testing µ = 0
is 0.00561, allowing for the uncertainty in the background, whereas 0.0004081, same as
PP-Model, ignoring this uncertainty.
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Figure 2: Comparison of the p-value functions computed assuming the background is known
and using the lower and mid-p-value with the third order approximation r∗.

Table I p-values for testing µ = 0 given x = 17, y = 6.7 and background error ±1.75

mid p-value 0.0004081
Φ(r∗) PP-Mol 0.00468
Φ(r∗) PN-Mol 0.00561

If we have the two p-value functions from PP-Model and PN-Model plotted together on
the same graph with x = 25, y = 6.7, and a background error of ±1.75, we will see that the
two p-value functions are nearly identical, which implies the background measurement is
flexible. In addition, they are both close to the mid-p-value function with known background
rate.
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Figure 3: Comparison of the p-value functions computed by PP-model and PN-model.
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Figure 4: Comparison of the p-value functions computed by PP-model and PN-model in
addition with the mid-p-value .

3.3 Discussion....

1. In the cases when fewer events are observed in the signal measurement than background.

2. Extreme case: x = 0/y = 0, any adjustment necessary?

3. Confidence Intervals?

4. nuisance parameters?(uncertainty in the standard error of the background??)

4 .... some HEP and GRA datasets

We also look into several datasets from the HEP and High Energy Gamma Ray Astro-
physics (GRA) literatures from [5], and we here follow his notations. Let x = Non, called
an on-source count, y = Noff , and k = x + y for compactness. The background count
mean’s estimate is b = αNoff , where α is the relative exposure of the two(on-source and
off-source) observations, and the background count’s uncertainty is δb = α

√
Noff . The

signal is estimated by s = Non − b = x − αy. The hypotheses test is µon = αµoff . Five
different Z-statistics are used. They are ZBi, quantile from Binomial distribution; ZP from
Poisson measurement; ZL, likelihood root, which is a 1st-order approximation; Z3, 3rd-
order approximation ignoring background error; and Zr∗ , the third order approximation
with background error adjustment. Significant tests are operated and results are listed in
Table II.

Table II Quantile Z’s for testing µon = αµoff
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Non = x 4 6 9 17 50 67 200 523 16789 498426 2119449
Noff = y 5 18.78 17.83 40.11 55 15 10 2327 1864910 493434 23671193

α 0.2 0.0692 0.2132 0.0947 0.5 2.0 10.0 0.167 0.0891 1.000 0.891
b 1.0 1.3 3.8 3.8 27.5 30.0 100.0 388.6 166213 493434 2109732

s=x-b 3.0 4.7 5.2 13.2 22.5 37 100 134.4 1376 4992 9717
δb 0.45 0.3 0.9 0.6 3.71 7.75 31.6 8.1 121.7 702.4 433.6

ZBi 1.66 2.63 1.82 4.46 2.93 2.89 2.20 5.93 3.23 5.01 6.40
mid-ZBi 1.49 2.50 1.67 4.34 2.87 2.81 2.11 5.90 3.34 5.01 6.82

ZP 2.08 2.84 2.14 4.87 3.80 5.76 INF 6.45 3.37 7.09 6.69
mid-ZP 1.93 2.73 2.03 4.80 3.74 5.72 INF 6.44 3.37 7.09 6.68
1st ZL 1.95 2.82 1.99 4.57 3.02 3.04 2.38 5.95 3.35 5.01 6.82
3rd Z3 2.13 2.92 2.11 4.64 3.13 3.30 2.98 5.97 3.35 5.08 6.82

est’d bg Zr∗ 1.98 2.87 2.02 4.60 3.03 3.02 2.34 5.95 3.35 5.01 6.82

As a modification, mid-ZBi and mid-ZP corresponding to mid-p-values are more appro-
priate to be considered. And Z-values are more consistent with large Astrophysics data
compared with different test statistics, although our method is initially motivated by rare
process with nuisance parameters. The 3rd-order approximation Z3 without background
error adjustment might not be good here due to unignorable imprecisions. When nuisance
parameter is incorporated into measurements, Z-values calculated based on r∗ are appreci-
ated. Surprisingly, the Z-values calculated from 3rd-order approximations Zr∗ are close to
Z-values calculated from likelihood root statistics ZL.(??)

5 Summary

We describe the third order approximations provided by the observed likelihood associated
with p-value function as a treatment of nuisance parameters arising in background measure-
ments. For the case of Poisson signal with either Poisson noise or Normal noise, we have
given out explicit results and shown that the method yields p-value functions with good
performance, ....
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