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The charge to group A1 is to select or develop one or more meth-

ods to solve problems of the following type. Methods should be

ranked on criteria to be determined by the group. The “Com-

monly proposed methods” and “Typical properties for compari-

son” listed below are only for illustration; the group must decide

for itself what methods and criteria to select.
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the problem (quoted from the email sent to participants)

We are performing a counting experiment with the (non-negative

integer) number of observed events n being Poisson distributed

with mean

µ = εs + b

where s is the parameter of interest for which we wish to set an

upper limit (0 ≤ s < sU), or a 2-sided interval (sL < s < sU). s

(the “cross section”) is the parameter of interest, and in principle

can have any real value 0 ≤ s < ∞.
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The nuisance parameter ε is a factor which converts between n

and s in some sense. It must be ≥ 0, and could be > 1. It is

either precisely known, or can have an uncertainty (see below).

The nuisance parameter b is the background rate. It must ≥ 0. It

is either precisely known, or can have an uncertainty (see below).

When ε and b have uncertainties, we may regard them as having

been determined in subsidiary counting experiments. The ob-

served numbers of events in these subsidiary experiments is set

to give the required uncertainties on ε or on b. Another variation

of the problem is that we just have Bayesian priors for ε and b

that are derived from a combination of objective information and

personal belief.

Typical values:

ε = 1.0± 0.1 b = 3.0± 0.3 n = 0,1,2, . . .20
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Possible extension:

A 2-channel version of the above, with n, ε and b (and the errors

on ε and b) each having two values, one for each channel, while

s is common to the 2 channels i.e. n1 and n2 are independent

Poisson observables, with means εis + bi. Again it is required to

determine an interval for s.

Typical values: divide equally among the channels, e.g.

ε1 = 0.5± 0.1/
√

2 ε2 = 0.5± 0.1/
√

2

b1 = 1.5± 0.3/
√

2 b2 = 1.5± 0.3/
√

2

where the subsidiary measurements are also divided between the

2 channels.
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Commonly proposed methods in High Energy physics:

• Bayes: Prior for s = uniform; 1/
√

s; 1/s

Prior for ε and for b subsidiary measurements = uniform

• Profile likelihood

• Modified profile likelihood

• Feldman-Cousins, with some fix for nuisance parameters

• Fully frequentist, with some ordering rule
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Typical properties for comparison:

• Coverage vs s at (ε, b) = (1,3), (1.1,3), (0.9,3), (1,3.3),

(1,2.7).

• Bayesian credibility for intervals.

• Interval length values for n distribution (Median and quar-

tiles).

• Behavior as a function of b, given n = 0 and n = 3.
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Why is this problem still unresolved?—A brief introduction.

The physicists present here can generally recommend, but not

enforce, statistical procedures. Some procedures, although sta-

tistically sound, have nevertheless been unpopular in HEP.

For example, some frequentist methods can produce empty in-

tervals (or single point intervals). For a frequentist, this makes

perfect sense, but very few physicists would ever consider pub-

lishing such a result. Such procedures don’t get adopted, or

worse, are replaced after an undesirable result actually occurs.

The Unified method of F&C, which takes the decision of whether

to quote a one or two sided interval away from the physicist, has

also proved difficult to sell in some cases. The recent emphasis

on 5σ discovery may magnify the problem in the future, as physi-

cists become more reluctant to publish a 2-sided interval for a

result with lower significance.
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Because the frequentist/Bayesian dispute continues unabated in

HEP, ideally, a procedure should satisfy both sides. Investigations

of the typical coverage of various methods are now available, but

without a clearly defined worst case, these may not convince the

skeptic. Investigations of the Bayesian credibility of non-Bayesian

methods are absent, leaving Bayesians unsatisfied.

Subjective informative priors for the parameter of interest are

very unpopular. We have no confidence in our own opinion,

for example, of the mass of the Higgs particle, nor in anyone

else’s opinion. Therefore, even subjective priors are invariably

uninformative for the parameter of interest. But priors for some

nuisance parameters are, in some cases, both subjective and

informative—a problem for frequentists.
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Philosophical opposition from some quarters is still present against

hybrid or mixed methods. Objective Bayesian approaches, for

example, provoke questions like “How am I to interpret such

intervals?” “What should I tell my students that they mean?”

Fully frequentist methods that rely on the Neyman construction

have, in the past, been considered unworkable in more than a

few dimensions. Progress is being made in this area, but more

work is clearly required.

Asymptotic solutions that are only well behaved at large n are

unappealing, as situations where n ≤ 2 are not uncommon.
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Situations where the observed quantity is an integer tend to

cause problems for methods that enforce a strict coverage re-

quirement. In the A1 problem, such methods tend to yield larger

intervals, for example, when the uncertainty on the background

parameter b is zero, than when it is small but finite. Such be-

havior is considered to be objectionable by most physicists, who

would like to be rewarded for their efforts in understanding their

background by obtaining a smaller interval, not a larger one.
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A related issue is the choice of the ensemble of experiments over

which the coverage is calculated. Traditionally, in calculating the

coverage, one fixes the time over which the data is taken (really

the integrated luminosity) in the frequentist repetitions. But

typically, both the running time and the final number of events

n are unspecified at the beginning of a real life experiment. The

issue of how closely the frequentist repetitions must match the

intention of the experimenters, for the calculated coverage to be

meaningful, has received little attention.

Including a mixture of running times in the coverage ensemble

would increase the minimum coverage of a method, and permit

smaller intervals while maintaining strict coverage.

The issue prompts a debate of the relative merits of “strict cov-

erage” vs “average coverage”.
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Although flat priors are historically the most common in HEP,

some caution must be exercised. While a flat prior for the pa-

rameter s is considered to be “conservative” for upper limits

(one sided intervals), this is not true for 2 sided intervals or

lower limits. Difficulties arrise when a flat prior for s is combined

with a Gaussian (normal) prior for ε. In multi channel versions

of the problem, flat priors for the subsidiary experiments cause

trouble—a well known problem for priors flat in large numbers

of dimensions.

There are various methods for selecting priors that are better

behaved (the objective Bayesian approach). Here, rather than

originating from “personal belief”, the prior is selected to give

good frequentist coverage properties, or minimal influence on

the posterior.
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The objective Bayesian approach, however, sacrifices some Bayesian

purity, as different priors may be selected, depending on the fre-

quentist ensemble (a stopping rule dependence), thus violating

the likelihood principle.

Conclusion

A discussion of the benefits and defects of various proposed

methods could continue indefinitely. I think that the HEP com-

munity will eventually converge on a single solution, or at least a

small number of solutions, but this convergence still seems years

away. We hope that progress can be accelerated using the input

of the statisticians at this workshop.
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