Handling Systematic Errors

Radford M. Neal, University of Toronto

BIRS, 19 July 2006



The Problem

Events, i, described by PID variables, v;, can be either “background” or “signal”.

Simulation programs for background and signal events exist, with unknown
“systematic” parameters, ¢ (assumed, w.l.g., to be the same for both programs).
These simulation programs define distributions for signal and background that

depend on ¢.

A prior for ¢ exists, which is based on some real information, but which is

probably too simple — eg, Gaussian, perhaps with diagonal covariance matrix.

The real events come from a mixture of signal and background, with proportion f
of signal. We may be most interested in testing whether f is zero. We want the

inference to be both sensitive and valid for any likely value of ¢.



Three-Phase Solution

Phase I: Simulate both signal and background events, and use them to train an
event classifier to distinguish signal from background. Given v; for an event, the

classifier outputs the probability, p;, that the event is from the signal distribution.

Phase II: Fix one or more cut points for p;, used to put each event into one of
two or more bins. With one cutpoint, these would be a background bin (p; low)

and a signal bin. We could divide up the signal bin using more cutpoints.

Estimate the probability that an event that is actually background will be put
into the signal bin (or such probabilities for several signal bins), using a new set of

events produced by the background simulator.

Multiplying by the number of background events that will be collected gives an

estimate of the expected number, b;, of background events that will land in bin j.

Phase II1I: Gather real events, use the event classifier to put them in bins, and
see whether the the number of events in the signal bin(s) exceeds the expected

background by enough to be declared significant.



Handling Systematic Errors — Phase I

In Phase I, what values for the systematic parameters, ¢, should we use when

generating signal and background events used to train the event classifier?

Option A: Generate all events using a single value, ¢,, for the systematic

parameters (eg, the prior mean). Train a classifier with v; as inputs on this data.

Option B: Generate events with many values of ¢, drawn from the prior.
Probably every event, 7, would be generated with a different ¢;. Train a classifier
with v; as inputs on all of this data. It learns to “robustly” classify an event

regardless of the value of ¢; used to generate it.

Option C: Same as Option B, except that the classifier takes both v; and ¢; as
inputs — ie, it learns to classify events given both the PID variables and the

systematic parameters.

Option C looks interesting, but doesn’t produce a single classifier for v;. Let’s look
only at A and B for the moment. The choice between A and B, and the choice of

classifier, affects sensitivity, but not the validity of the final conclusion.



Handling Systematic Errors — Phase II

We fix an event classifier obtained in Phase I, and fix a set of cutpoints (which
define bins). We need to estimate the expected number of background events that

will be put in each bin, using a new sample of simulated background events.

Option A: Generate N background events using a single set of systematic
parameters, ¢,. Produces one set of estimates, l;j, with known Poisson

uncertainty, but with no indication of how much the b; vary as ¢ varies.

Option B: For each of K values, ¢, for the systematic parameters, generate M
background events. To keep computation time the same as Option A, KM = N.
Estimate expected numbers of background events for each ¢, with the estimate
for bin j being lA)Jk Deconvolve the Poisson variation to estimate the distribution
of the true b; as ¢ varies. Needs M to be large enough for reasonable estimates

b; 1, and hence K will be fairly small.

Option C: Let M =1 and hence K = N in Option B. Estimating b, for each
@1 separately is impossible. Instead, train a classifier that takes ¢ as input and
tries to predict which bin event k is put in. When this classifier is given input ¢, it
produces bin probabilities that when multiplied by the total number of events give

estimates of b; for that ¢. Using the prior on ¢, we get a distribution for the b;.



Discussion of Phase II Options

Option A ignores systematic error — the final inference may not be valid.

Option B accounts for systematic error using a fairly small number of values for ¢.
If the prior for ¢ is Gaussian, and the effects of ¢ on bin probabilities are linear,
the resulting distribution for b; will be Gaussian, and will be estimated reasonably
well with a small sample. It’s important to deconvolve, not use the distribution of
?)j as if it were the distribution of b; — simplest version: estimate the mean of b;
by the mean of the l;j,k, and the variance of b; by the variance of the l;j,k minus

IA)j /K (from Poisson variance).

But if there are non-linear effects, the distribution of b; might be non-Gaussian,
perhaps with heavy tails. To see the extent of the tails, a large sample of ¢ values

is needed.

Option C uses as large a sample of ¢ values as possible, but relies on a classifier to
estimate the b; for a given ¢. This implicitly assumes that b; varies (somewhat)

smoothly with ¢. The classifier’s parameters will probably not be well determined
by the data. If it’s a Bayesian classifier, one could sample from the posterior to see

the combined uncertainty in b; from this and from the prior on ¢.



Handling Systematic Errors — Phase III

The distribution for b; found in Phase II could be taken as a prior to be used in
Phase III. (Or one can visualize it as a result of an imaginary experiment if one

doesn’t like priors.)
Option A: Assume this prior is Gaussian.

Option B: Like A, but we make the Gaussian assumption only if we fail to reject

it from the data. Unfortunately, one needs quite a bit of data for a reasonable test.

Option C: Do something that handles non-Gaussian priors. Needed for B if the

test rejects.

Maybe the whole approach is wrong, though. ..



Isn’t the Actual Data Informative About ¢?

So shouldn’t we use a distribution of ¢ that is updated from the prior on the basis
of the actual data?

A direct approach would be based on the full likelihood:

where p(v;|¢, f) is implicitly defined by the signal and background simulators.
Integrating L(¢, f) with respect to the prior for ¢ would give the marginal
likelihood for f (the signal fraction).

Unfortunately, we have no expression for p(v;|¢, f), so the direct approach is out.



A Possible Approach?

Use the Phase I simulation data (with many ¢ values) to train a model for

predicting ¢; from wv;.

Use Option C, so that we also train a classifier to separate signal and background

given v; and ¢;.

In Phase II, define cutpoints for the outputs of both these Phase I models, and use
additional simulation data to find the probabilities of events falling in these bins

as a function of ¢.

From real events, we get a likelihood, L(¢, f), based on these bin counts.



