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• The general problem – Rejecting a null hypothesis or rejecting
a test hypothesis when neither of them is particularly well specified

• Combinations of search analyses

• Some software and examples

• Digression: Odd p-value behavior when channels are combined

and observations on



The Problem:  Searching for New Physics in a HEP experiment

Just about the only thing common is that the observations are all
integer event counts.

Two hypotheses: 
H0=null hypothesis, usually the “Standard Model”
H1=a test hypothesis, which includes some new interaction or particle

H0 is a compound hypothesis, with nuisance parameters
H1 is the same, with physics parameters,

and (usually, but not necessarily) the same nuisance parameters as H0,
plus a few.

Example:  H0 describes predicts a Standard Model background rate in each
bin of each histogram for a search analysis.  Nuisance parameters are
things like luminosity, acceptance, SM cross section predictions, etc…

H1 is the SM with something new.  Physics parameters are the mass and
cross section of the new thing, and additional nuisance parameters are
its acceptance and reconstruction resolution.



Analyzers are Smart and Careful and Want Everything Included
• Events are selected based on a model of new physics to be tested

• Sometimes this model isn’t very specific (searching for “anything” – another topic)
• Usually searches are optimized for specific processes

• Most backgrounds are rejected (detector trigger, simple selection cuts)

• Sophisticated discriminants are formed (Neural Nets, Likelihoods,
Matrix Element-based functions) out of event observables to separate
signal from background.  In the past, simple discriminants were reconstructed
masses (“bump hunting”). 

• Histograms are formed using these discriminants, and data are compared
against H0 and H1 predictions (usually estimated with Monte Carlo, but
often with data).  Bin contents are sums of different components!

• Uncertainties are evaluated on rates, histogram shapes, and MC (data)
statististical uncertainties. Some nuisance parameters affect rates and shapes
of signals and backgrounds.  Some uncertainties are asymmetric.

• Often data samples are used to calibrate nuisance parameters

• Usually more than one histogram (channel, or even analysis team) is 
testing the same H1 in different ways, and we’d like to combine them all.  Sometimes
events are shared – it’s easier when they aren’t.

• H1 can predict FEWER events in some bins than H0.  Be ready for it!



The Goals
• We would like to be the first to discover something new.

• We would like to set the strongest limits on models that do not predict nature.

• We’d like to have error rates specified by our choice of Confidence Level (95%
for exclusion, 5σ for discovery, usually) (“do what you like but check the

coverage – OK for correctness, but often not optimal).

These goals are usually not in conflict, unless an analysis is poorly designed.

Analyses are not often optimized with these in mind, but usually something
easier to calculate.

Examples:  optimize 
• s/sqrt(b)
• s/sqrt(s+b)
• Neural-Net Training Error sum.  (Why do we care about this one?  NN

training programs are built around it).

In a multichannel (multi-bin) analysis, these can be ambiguous.



A Concrete Example:   Standard Model Higgs Boson Search with CDF
shown at APS Dallas, 2006

Two disjoint event samples, “single-tagged” and “double-tagged”
Nuisance parameters affect both in a correlated way:
Luminosity, background rates, Jet energy scale and resolution, signal
detection efficiency.  New physics prediction adds incoherently to the H0 prediction



Another Interesting Example:  A Gaussian Problem on One Side and a
Poisson Problem on the Other.
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Zoomed in on last few bins
Poisson!

Histogram of a NN variable to search
for single top quarks.  Distributions
in each bin ~Gaussian for most bins.

SM predictions can be highly uncertain (QCD is difficult to use for
predictions), but data can constrain background rates in bins with
little signal.



The Traditional Solution to Large, Uncertain Backgrounds:  Sideband Fits
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Guess a shape that fits the backgrounds, and fit it with a signal. 
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Sometimes Signal and Background Look Just a Little Too Alike

Sideband fit attempted anyway.  2-step process:  background rate
in signal window determined from sideband fit.  But there could be 
signal in sideband. With increasing tanβ, signal gets wider.  Made it into PRL.
This tecnique works well when signal is confined to a definite subset of bins.



Shape Errors Can Be Show-Stoppers
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Example of a shifted histogram shape – Compare the difference between
nominal and shifted against a signal – easy to fake a signal!

More accurately, if the uncertainty is included, we should be insensitive
to such a signal – unable to discover because we are unable to be sure such
a bump is a signal or just a background shape that looks a bit different from
the central prediction.  Need to put them in!  Use them to evaluate sensitivity.

Sinervo’s Type II errors



Monte Carlo Statistical Errors in Each Bin

SM prediction is
a sum of Poisson
components with
different weights.

“QCD” component
is poorly estimated:
Just two MC events
make it into the
histogram.

Often MC statistical uncertainties
are simply ignored, or they
are treated as overall normalization
uncertainties.



Proposed Solution(s) to Complicated Problems
Try both Bayesian and as-Frequentist-as-Possible approaches

Uncertainty on nuisance parameters usually only has a Bayesian interpretation.
• Sometimes we have access to the subsidiary measurement’s data

and we can treat it in a frequentist manner, but
• Usually one or more nuisance parameters is a theoretical calculation,

or some other number for which we assign some non-frequentist belief
distribution.  Example:  comparing differing Monte Carlo predictions, neither
of which can be ruled out by the data.

A mostly-frequentist approach:  Use the Likelihood ratio as a test
statistic, and simulate pseudoexperiments to find its distribution in H0 and H1.
Vary the nuisance parameters according to their Bayesian credibility distributions
in the pseudoexperiments to get the “Prior predictive ensemble”

“Cousins and Highland” – See Kyle Cranmer’s talk at Phystat03



Likelihood Ratios with Maximized Likelihoods

• Very similar to Kyle Cranmer’s Proposal (PHYSTAT2003).  Notation from Kendall
and Stuart (almost)

x = observation

: Physics parameters in H1 : Nuisance Parameters
(take a superset of all)

Nuisance parameters which maximize L for the test hypothesis H1

Nuisance parameters which maximize L for the null hypothesis H0

: Physics parameters in H0

In the Gaussian limit, -2lnQ ≈Δχ2(H1,H0)

No maximization is
done over
results are independent
of the model space
considered.  Just two
hypotheses at a time! 



Monte Carlo Statistical Errors in Each Bin

• For each signal and background contribution in each bin, there may
be a Monte Carlo statistical uncertainty which is uncorrelated with other
bins’ MC statistical uncertainty.  It could be data too, not just MC statistics.

• Lots of extra nuisance parameters – the true values of each of the rates
of each component in each bin.  Would like to maximize L over all of these.

• An almost identical problem is sovled by Barlow and Beeston
Comp. Phys. Commun 77 219 (1993), for unconstrained fraction fitting.
(see TFractionFitter in ROOT).  Here we have constraints, and possibly
some sources of signal or background not evaluated with MC but with
a smooth function, for example.

• Maximizing L with respect to all of these parameters amounts to solving
a system of coupled quadratic equations in each bin – tractable numerically.



Asymmetrical Uncertainties
• Common in HEP.  Example: 

But a question of how to combine a search with b1 background
events and the uncertainty coming from a nuisance parameter s,
with a second search with 

Explored in detail by Barlow, 
ArXiv:physics/0406120 

where the uncertainty arise from the same nuisance parameter s.
One’s symmetric and the other’s asymmetric.  

Abstraction:  b1 and b2 aren’t the nuisance parameters, but rather are just
functions that depend on a common nuisance parameter s.  Nuisance parameters
are then related to the sources of uncertainty, not the things affected by these
uncertainties (which may be affected by many sources of uncertainty).

Treat the nuisance parameter s with a prior that’s a unit Gaussian centered on zero.

Parameterize the effect of s on b1 and b2 as quadratic functions 
functions (one of Barlow’s options)
or something more complicated (if you don’t like the truncated Gaussian prior).

shape errors:
histogram interpolation

Alex Read’s PVMORPH



Alternative Nuisance Parameter Priors
and Ambiguities in Combination

• Sometimes it’s desirable to have a Gamma prior for some
uncertain parameter, such as an acceptance

• But sometimes you may have another selection whose acceptance
is anticorrelated with the first (common when dividing selections up
into disjoint pieces to spread work across different teams of people).

They can’t both have a Gamma Prior!



Two-hypothesis test – Form test statistic out of all input histograms, and
use Pseudoexperiments to find the distributions.  Plot observation.

At LEP, life was easy with large s/b ratios and small backgrounds.  At the
Tevatron and LHC, we are in trouble:  low s/b, large backgrounds.



Back to the CDF WH Search

• 20% uncertainty on backgrounds, signals are very small
(shown x10 for visibility).  

• Background rates, shapes, signal acceptances fluctuate wildly in the
prior-predictive ensemble – correalate all errors.
Unknown true values in the data.

How to cope?
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Answer – Maximizing L with respect to Nuisance Parameters improves
sensitivity.

• Sometimes we think of maximizing L in a fit as a way of including the effects
of nuisance parameters.  But that’s already done with the prior predictive
ensemble when finding the PDF’s of -2lnQ

• Fitting for the best values of
the nuisance parameters makes
both H1 and H0 fit the data
(pseudodata) better.

• But it can improve the separation
in PDF(-2lnQ) in the two hypotheses
due to constraints on uncertain
parameters:

Two sideband fits (really whole-
spectrum fits) on each 
pseudoexperiment.  In HEP we
use MINUIT.



Computing 5σ Significances
Hard to do MC integration to measure a fraction of 2.85×10-7 – need b(billion)
pseudoexperiments (x4xMINUIT) to discover something the brute force way.

A technique used at LEP (A. Read told me about this):

P(-2lnQ|H1)/P(-2lnQ|H0) = Q

You can reweight the outcome of the pseudoexperiments by Q to get
the H1 PDF from H0’s and vice-versa.

Only problem – a data outcome that’s not represented well either by H0 or H1’s
distribution.

With systematic variations on the pseudoexperiments, the weight is a
systematically varied Q (but keep the systematically unvaried Q as the
test statistic! – see later).

But – maximization of L over nuisance parameters ruins this.
P(-2lnQ|H1)/P(-2lnQ|H0)=αQ observed in at least one example for some α. General?



The Concrete Example:  CDF’s WH →lvbb, single-tag
exclusive channel, L=695 pb-1

CLs limit =               59.4*SM
expected limit=     49.0*SM

CLs limit with fits =  40.3*SM,
expected limit =   26.7*SM

Bayesian limit with marginalization:
Obs limit=             40.4*SM,
expected limit=    26.7*SM



Varying Likelihood according to C+H?

• Q (and the likelihoods) are just test statistics.  They are not integrated
over with a Cousins and Highland variation of nuisance parameters.

• Q is just a function of the observed data (which is not uncertain)
and functions which we choose (which are also not uncertain)

• The distributions of Q in H0 and H1 are uncertain
• Varying Q in a Cousins and Highland way “splits outcomes”
-- addition of even the smallest uncertainty in a nuisance parameter

can make a limit jump by a huge amount.
(but see comment on addition of even the smallest amount of extra
experimental information, in the form of a new channel).

• We hope MINUIT gives us the same answer every time an identical
problem is posed to it.  



Need to Integrate over Nuisance Parameters even When
Maximizing L

is just an ordering rule – we still do not
know its distribution in H0 and H1
because of the nuisance parameters

Simplest example:  one-bin counting experiment.
• All (sensible) ordering rules are equivalent to the event count.
• Q has a distribution of a sum of delta functions at fixed locations.
• Ignoring the variation in the nuisance parameters when making

the distribution of Q is the same as ignoring systematic errors.



Look-Elsewhere for Exclusion too?

• Well-known effect produces false discoveries at any desired significance
level if enough independent experiments are done.

• Called “look-elsewhere”, “trials factor”, “greedy bump bias”, other names.
• Usual prescription – dilution of significance based on how many
independent experiments are conducted.  

Best practice – simulate actual procedure in Monte Carlo 
pseudoexperiments and see what the PDF of the lowest p-value is
in the null hypothesis.

• In absence of conditioning, you get 5% false exclusions at 95% CL.  Do we
need to dilute the exclusion significance too when performing many
independent tests?  How about tests where we know we have no
sensitivity (we can construct infinitely many of these).



Bayesian Approach to the General Problem

With a carefully chosen prior π, θcut can be infinity.

Typically the physics parameter integrated over is a cross section.
Other physics parameters, like branching fractions or masses
is typically not used and have pitfalls.

The marginalization approach:

Profiling: instead of integrating over nuisance parameters, maximize L
with respect to them.



“We, along with other immigrant groups, have been the targets of detentions, 
deportations, marginalization, profiling, and now increased criminalization.”

H. Soliveres,  The Filipino Express Online   (found with a Google search for
“marginalization” and “profiling”)

Benefiting from the Sidebands with a Marginalized Bayesian Limit

An Example.  Similar shape, but much
sharper when you plot

L×π as a function of the background rate.

Integral emphasizes those values of θs most
consistent with the data, even in bins with
no signal expectation.

CDF WH search’s Bayesian limit was nearly independent of prior background uncertainty



A Pitfall To Avoid with Marginalized
Bayesian Limits
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to normalize the expected 
background rates and to define
π for the background distribution,

Using the entire histogram again
in a marginalized Bayesian
limit calculation now uses the
same data constraint twice, for
a factor of sqrt(2) in constraint.

Suggestion:  get π from another
subsidiary experiment or other estimation.



Some Software and a Suggestion
Software and documentation provided at

http://www.hep.uiuc.edu/home/trj/cdfstats/mclimit_csm1/index.html
• Detailed note provided which documents the interfaces.
• Uses ROOT histogram classes (1D and 2D) and ROOT tools.

• User provides histograms of signal and background templates,
(with unit-weight entries in order to do Poisson statistical errors)
normalization factors, rate uncertainties, shape variation templates.

• Bayesian and CLs limits calculated.  P-values for discovery (1-CLb)
calculated.  Expected limits and expected p-values computed.

Interface is rather cumbersome due to the large number of possible
systematic errors which need to be included.  This is all much easier
with Gaussian statistics, but some problems are mixed!

Suggsetion:  Pick the method that has correct coverage, but maximizes
the discovery potential while including all errors.  I am a pragmatist and do not
concern myself with philosophical purity of method.



An Odd Feature of P-values when Combining Two Bins
• Poisson Statistics regime – large probabilities of getting specific
outcomes

• A weak channel is combined with a strong channel.  Your limit
can jump discontinuously when a weak channel is combined in.
A sign of non-optimality.
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