MULTI-AGENT OPTIMIZATION

Roger J-B Wets

Mathematics, University of California, Davis

Banff IRS - May 2007

Collaborators & Contributors

- * Alejandro Jofré, Universidad de Chile
- ★ R.T. Rockafellar, University of Washington
- * Michael Ferris, University of Wisconsin
- * Adib Bagh & Sergio Lucero, University California, Davis
- Hedy Attouch, Université de Montpellier
- Ruben López, Universidad Catolica de Conception
- Conversations: William Zame, Martine Quinzii, Jacques Držee, Kenneth Arrow, Yves Balasko, Okie Nomia, Monique Florenzano, Jean-Pierre Aubin
- Indirectly: S. Robinson, J.-S. Pang, D. Ralph, C. Kanzow, T. Munson, S. Dirkse

ヘロト ヘアト ヘビト ヘビト

2

Multi-Agent Optimization

O. Introduction

- Roger Guesnerie & Adam lectures
- flow control: transportation, communication (hot topic)
- energy pricing: oligopoly, price setting
- financial markets: introduction of new instruments
- economic modeling
- 1. Variational Analysis Tools
- 2. Deterministic Problems
 - foundations & computational schemes
- 3. Stochastic Problems (Walras)
 - foundations & computational schemes

イロト イポト イヨト イヨト 三油

Multi-Agent Optimization

O. Introduction

- Roger Guesnerie & Adam lectures
- flow control: transportation, communication (hot topic)
- energy pricing: oligopoly, price setting
- financial markets: introduction of new instruments
- economic modeling
- 1. Variational Analysis Tools
- 2. Deterministic Problems
 - foundations & computational schemes
- 3. Stochastic Problems (Walras)
 - foundations & computational schemes

・ 同 ト ・ ヨ ト ・ ヨ ト …

2

I. Variational Analysis Tools

$$\begin{split} \mathcal{N}_{\infty}^{\#} &= \left\{ N \subset \mathbb{N} \ \middle| \ \forall \ \mathbb{N}' \in \mathcal{N}_{\infty}, \ N \cap \mathbb{N}' \neq \emptyset \right\} \\ \mathcal{N}_{\infty} &= \left\{ N \subset \mathbb{N} \ \middle| \ \forall \ \mathbb{N}' \in \mathcal{N}_{\infty}^{\#}, \ N \cap \mathbb{N}' \neq \emptyset \right\} \end{split}$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

I. Variational Analysis Tools

$$\begin{split} \mathcal{N}_{\infty}^{\#} &= \left\{ \textbf{\textit{N}} \subset \textbf{\textit{N}} \ \middle| \ \forall \ \textbf{\textit{N}}' \in \mathcal{N}_{\infty}, \ \textbf{\textit{N}} \cap \textbf{\textit{N}}' \neq \emptyset \right\} \\ \mathcal{N}_{\infty} &= \left\{ \textbf{\textit{N}} \subset \textbf{\textit{N}} \ \middle| \ \forall \ \textbf{\textit{N}}' \in \mathcal{N}_{\infty}^{\#}, \ \textbf{\textit{N}} \cap \textbf{\textit{N}}' \neq \emptyset \right\} \end{split}$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Roger J-B Wets Multi-Agent Optimization

・ロト ・回 ト ・ヨト ・ヨト

Roger J-B Wets Multi-Agent Optimization

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Roger J-B Wets Multi-Agent Optimization

ヘロア ヘビア ヘビア・

Sets Limits

Definition

Given $\{C^{\nu} \subset \mathbb{R}^n\}_{\nu \in \mathbb{N}}$, the *outer limit* is the set

$$\underset{\nu \to \infty}{\text{Limsup}} \ C^{\nu} = \left\{ x \ \middle| \ \exists \ N \in \mathcal{N}_{\infty}^{\#}, \ \exists \ x^{\nu} \in C^{\nu} \ (\nu \in N) \text{ with } x^{\nu} \xrightarrow{} x \right\}$$

while the inner limit is the set

$$\underset{\nu\to\infty}{\text{Liminf }} C^{\nu} = \left\{ x \mid \exists N \in \mathcal{N}_{\infty}, \ \exists x^{\nu} \in C^{\nu} \ (\nu \in N) \text{ with } x^{\nu} \xrightarrow[N]{} x \right\}$$

The *limit* of the sequence exists if the outer and inner limit sets are equal:

$$\lim_{
u
ightarrow\infty} {m {\cal C}}^
u = \mathop{
m Limsup}_{
u
ightarrow\infty} {m {\cal C}}^
u = \mathop{
m Liminf}_{
u
ightarrow\infty} {m {\cal C}}^
u,$$

then $C^{\nu} \rightarrow C$; Painlevé-Kuratowski *convergence*.

<ロ> (四) (四) (三) (三) (三)

Properties of Set Limits

- $\mathcal{B}(x^{\nu}, \rho^{\nu}) \to \mathcal{B}(x, \rho)$ when $x^{\nu} \to x$ and $\rho^{\nu} \to \rho$. When $\rho^{\nu} \to \infty$, $\mathcal{B}(x^{\nu}, \rho^{\nu}) \to \mathbb{R}^{n}$, their complements $\to \emptyset$.
- For set $D \subset \mathbb{R}^n$ with cl $D = \mathbb{R}^n$ but $D \neq \mathbb{R}^n$ (e.g., D = the rational vectors), $D \equiv C^{\nu} \to \mathbb{R}^n$, not to D.
- Liminf_{ν} C^{ν} and Limsup_{ν} C^{ν} (and Lim_{ν} C^{ν}) are closed;

•
$$C^{\nu} \nearrow \implies \operatorname{Lim}_{\nu} C^{\nu} = \operatorname{cl} \bigcup_{\nu} C^{\nu},$$

 $C^{\nu} \searrow \implies \operatorname{Lim}_{\nu} C^{\nu} = \bigcap_{\nu} \operatorname{cl} C^{\nu}$

- $\emptyset \neq C^{\nu}$ and *C* closed, $\operatorname{Limsup}_{\nu} d_{C^{\nu}}(0) < \infty$, $C^{\nu} \to C \iff \forall x, \operatorname{Limsup}_{\nu} \operatorname{prj}_{C^{\nu}}(x) \subset \operatorname{prj}_{C}(x)$. also convex: $C^{\nu} \to C \iff \operatorname{prj}_{C^{\nu}}(x) \to \operatorname{prj}_{C}(x) \forall x$
- C^{ν} convex \implies $\operatorname{Liminf}_{\nu} C^{\nu}$ (and $\operatorname{Lim} C^{\nu}$) convex, if $C = \operatorname{Liminf} C^{\nu}$, for any compact set $B \subset \operatorname{int} C$, then $B \subset \operatorname{int} C^{\nu}$ for ν large enough.

イロン 不良 とくほう 不良 とうほ

Convergence of solutions of convex systems

Theorem

 $C^{\nu} = \{x \in X^{\nu} \mid L^{\nu}(x) \in D^{\nu}\}, \qquad C = \{x \in X \mid L(x) \in D\},\$ $L^{\nu}, L : \mathbb{R}^{n} \to \mathbb{R}^{m} \text{ linear; } X^{\nu}, X \subset \mathbb{R}^{n} \text{ and } D^{\nu}, D \subset \mathbb{R}^{m} \text{ convex; and }\$ that L(X) cannot be separated from D. If $L^{\nu} \to L$,

 $\operatorname{Liminf}_{\nu} X^{\nu} \supset X \text{ and } \operatorname{Liminf}_{\nu} D^{\nu} \supset D, \text{ then } \operatorname{Liminf}_{\nu} C^{\nu} \supset C.$

$$L^{
u}
ightarrow L, \ X^{
u}
ightarrow X, \ D^{
u}
ightarrow D \implies C^{
u}
ightarrow C.$$

* for linear mappings $L^{\nu} \to L$ and convex sets $D^{\nu} \to D$, if D and rge L cannot be separated, then $(L^{\nu})^{-1}(D^{\nu}) \to L^{-1}(D)$. * $A^{\nu} \to A$, $b^{\nu} \to b$, A full rank, $\{x \mid A^{\nu}x = b^{\nu}\} \to \{x \mid Ax = b\}$. * $\operatorname{Liminf}_{\nu}(C_{1}^{\nu} \cap C_{2}^{\nu}) \supset \operatorname{Liminf}_{\nu} C_{1}^{\nu} \cap \operatorname{Liminf}_{\nu} C_{2}^{\nu}$ holds when C_{1}^{ν}, C_{2}^{ν} are convex and $\operatorname{Liminf}_{\nu} C_{1}^{\nu}$, $\operatorname{Liminf}_{\nu} C_{2}^{\nu}$ cannot be separated. Indeed,

 $C_1^{\nu} \to C_1, \ C_2^{\nu} \to C_2 \implies C_1^{\nu} \cap C_2^{\nu} \to C_1 \cap C_2$ as long as C_1 and C_2 cannot be separated.

The graph of a set-valued mapping

•
$$x \rightarrow \text{sets}(U)$$
 collection of all subsets of U , or
• $\text{gph } S = \{(x, u) \mid u \in S(x)\} \subset X \times U$
 $S : X \Rightarrow U, \quad S(x) = \{u \mid (x, u) \in G\}, \quad G = \text{gph } S.$
dom $S = \{x \mid S(x) \neq \emptyset\}, \quad \text{rge } S = \{u \mid \exists x \text{ with } u \in S(x)\}$
 $S(C) := \bigcup_{x \in C} S(x) = \{u \mid S^{-1}(u) \cap C \neq \emptyset\},$

while the inverse image of a set D is

$$\mathcal{S}^{-1}(D) := \bigcup_{u \in D} \mathcal{S}^{-1}(u) = \{ x \mid \mathcal{S}(x) \cap D \neq \emptyset \}.$$

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - 釣A@

Examples

•
$$F : X \to \mathbb{R}^m$$
, F^{-1} possibly set-valued, rge $F^{-1} = X$.
• $F : X \to \mathbb{R}^m$, $F(x) = (f_1(x), \dots, f_m(x))$,
for $u = (u_1, \dots, u_m) \in \mathbb{R}^m$,
 $F^{-1}(u) = \{x \in X \mid f_i(x_1, \dots, x_n) = u_i, i = 1, \dots, m\}$

• Generalized equations and implicit mappings.

find \bar{x} such that $S(\bar{x}) \ni \bar{u}$

 $S: \mathbb{R}^n \rightrightarrows \mathbb{R}^m$. Emphasis on the behavior of $S^{-1}(u)$ near \bar{u} .

• Algorithmic mappings and fixed points. $S : \mathbb{R}^n \Rightarrow \mathbb{R}^n$: $\bar{x} \in S(\bar{x})$ is a *fixed point* Finding \bar{x} : from x^0 use the rule $x^{\nu} \in S(x^{\nu-1})$, i.e.,

$$x^1 \in S(x^0), \ x^2 \in (S \circ S)(x^0), \ \ldots, \ x^{\nu} \in (S \circ \cdots \circ S)(x^0).$$

Semicontinuity

Definition

A set-valued mapping $S : \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ is *outer semicontinuous* (osc) at \bar{x} if

 $\operatorname{Limsup}_{x\to \bar{x}} S(x) \subset S(\bar{x}),$

or equivalently $\operatorname{Limsup}_{x \to \overline{x}} S(x) = S(\overline{x})$. It's *inner semicontinuous* (isc) at \overline{x} if

 $\liminf_{x\to \bar x} S(x)\supset S(\bar x),$

equivalently, $\operatorname{Liminf}_{x \to \overline{x}} S(x) = S(\overline{x})$ when *S* is closed-valued. It's *continuous* at \overline{x} if it's osc and isc, i.e.,

 $\text{ if } S(x) \to S(\bar{x}) \text{ as } x \to \bar{x}.$

ヘロト ヘアト ヘビト ヘビト

Outer- and Inner-semicontinuity

ヘロト 人間 とくほとくほとう

Profile Mappings

・ロト ・回 ト ・ヨト ・ヨト

4

Profile Mappings

For $f: \mathbb{R}^n \to \overline{\mathbb{R}}$, the *epigraphical profile* mapping $E_f: \mathbb{R}^n \rightrightarrows \mathbb{R}^1$

$$E_f(x) = \{ \alpha \in \mathbf{R} \mid \alpha \geq f(x) \},\$$

has gph E_f = epi f, dom E_f = dom f, and $E_f^{-1}(\alpha) = \text{lev}_{\leq \alpha} f$.

• E_f is osc at $\bar{x} \iff f$ is lsc at \bar{x}

• it's isc at $\bar{x} \iff f$ is usc at \bar{x} .

- E_f continuous at $\bar{x} \iff f$ continuous at \bar{x} .
- $\alpha \mapsto \operatorname{lev}_{\leq \alpha} f \operatorname{osc} \iff f \operatorname{lsc}$
- the hypographical profile mapping $H_f : \mathbb{R}^n \rightrightarrows \mathbb{R}^1$ with $H_f(x) = \{ \alpha \in \mathbb{R} \mid \alpha \leq f(x) \}$: analogous properties

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Graph Convexity

ヘロン 人間と 人間と 人間と 一座

Inner semicontinuity from convexity

Theorem

Consider a mapping $S : \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ and a point $\bar{x} \in \mathbb{R}^n$. (a) If S is convex-valued and int $S(\bar{x}) \neq \emptyset$, then a necessary and sufficient condition for S to be isc relative to dom S at \bar{x} is that for all $u \in \text{int } S(\bar{x})$ there exists $W \in \mathcal{N}(\bar{x}, u)$ such that $W \cap (\text{dom } S \times \mathbb{R}^m) \subset \text{gph } S$; in particular, S is isc at \bar{x} if and only if $(\bar{x}, u) \in \text{int}(\text{gph } S)$ for every $u \in \text{int } S(\bar{x})$. (b) If S is graph-convex and $\bar{x} \in \text{int}(\text{dom } S)$, then S is isc at \bar{x} .

(c) If S is isc at \bar{x} , so is $x \mapsto \operatorname{con} S(x)$.

Moreover: Let $T(w) = \{x \mid f_i(x, w) \le 0, i = 1, ..., m\}$ with f_i finite, continuous, $f_i(\cdot, w)$ convex in x. If for $\overline{w}, \exists \overline{x}$ such that $f_i(\overline{x}, \overline{w}) < 0$ for all i, then T is continuous on a neighborhood of \overline{w} .

Inner semicontinuity from convexity

Theorem

Consider a mapping $S : \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ and a point $\bar{x} \in \mathbb{R}^n$.

(a) If *S* is convex-valued and int $S(\bar{x}) \neq \emptyset$, then a necessary and sufficient condition for *S* to be isc relative to dom *S* at \bar{x} is that for all $u \in \text{int } S(\bar{x})$ there exists $W \in \mathcal{N}(\bar{x}, u)$ such that $W \cap (\text{dom } S \times \mathbb{R}^m) \subset \text{gph } S$; in particular, *S* is isc at \bar{x} if and only if $(\bar{x}, u) \in \text{int}(\text{gph } S)$ for every $u \in \text{int } S(\bar{x})$.

(b) If S is graph-convex and $\bar{x} \in int(\text{dom } S)$, then S is isc at \bar{x} . (c) If S is isc at \bar{x} , so is $x \mapsto \text{con } S(x)$.

Moreover: Let $T(w) = \{x \mid f_i(x, w) \le 0, i = 1, ..., m\}$ with f_i finite, continuous, $f_i(\cdot, w)$ convex in x. If for $\bar{w}, \exists \bar{x}$ such that $f_i(\bar{x}, \bar{w}) < 0$ for all i, then T is continuous on a neighborhood of \bar{w} .

Pointwise and graphical limits

- $(p-\text{Limsup}_{\nu} S^{\nu})(x) = \text{Limsup}_{\nu} S^{\nu}(x)$
- $(p-\text{Liminf}_{\nu} S^{\nu})(x) = \text{Liminf}_{\nu} S^{\nu}(x)$
- when equal, the *pointwise limit* $p-Lim_{\nu} S^{\nu}$ exists
- graphical outer limit, g-Limsup_{ν} S^{ν} :

$$\operatorname{gph}(\operatorname{g-Limsup}_{\nu} \mathcal{S}^{
u}) = \operatorname{Limsup}_{\nu}(\operatorname{gph} \mathcal{S}^{
u})$$

• graphical inner limit, g-Liminf_{ν} S^{ν} :

$$\operatorname{gph}(\operatorname{g-Liminf}_{\nu} \mathcal{S}^{
u}) = \operatorname{Liminf}_{\nu}(\operatorname{gph} \mathcal{S}^{
u})$$

- they agree, the graphical limit g-Lim $_{\nu} S^{\nu}$ exists
- All these mappings are osc
- p-Lim_{ν} S^{ν} = g-Lim_{ν} S^{ν} , requires *equi-outer semicontinuity*

Approximation of generalized equations

Theorem

Consider the generalized equation $S^{\nu}(x) \ni \overline{u}^{\nu}$ as an approximation to the generalized equation $S(x) \ni \overline{u}$, with solution sets $(S^{\nu})^{-1}(\overline{u}^{\nu})$ and $S^{-1}(\overline{u})$; assume the mappings $S, S^{\nu} : \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ are closed-valued.

(a) When g-Limsup_{ν} $S^{\nu} \subset S$, one has for every choice of $\bar{u}^{\nu} \to \bar{u}$ that $\text{Limsup}_{\nu}(S^{\nu})^{-1}(\bar{u}^{\nu}) \subset S^{-1}(\bar{u})$. Thus, any cluster point of a sequence of approximate solutions is a true solution.

(b) When g-Liminf_{ν} $S^{\nu} \supset S$,

 $S^{-1}(\bar{u}) \subset \bigcap_{\varepsilon>0} \operatorname{Liminf}_{\nu}(S^{\nu})^{-1}(\mathcal{B}(\bar{u},\varepsilon))$. So, every true solution is the limit of approximate solutions for some $\bar{u}^{\nu} \to \bar{u}$.

(c) When $S^{\nu} \stackrel{g}{\rightarrow} S$, both conclusions hold.

イロト イポト イヨト イヨト 三油

Framework

'Classical': fcn(
$$\mathbb{R}^n$$
) = { $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ }
'New': fv -fcn(\mathbb{R}^n) = { $f : D \to \mathbb{R}$ | for some $\emptyset \neq D \subset \mathbb{R}^n$ }
Epigraph: epi $f = \{(x, \alpha) \in D \times \mathbb{R} \mid \alpha \ge f(x)\} \subset \mathbb{R}^{n+1}$,
when $f \in \text{fcn}(\mathbb{R}^n)$, epi $f = \{(x, \alpha) \in \mathbb{R}^{n+1} \mid \alpha \ge f(x)\}$.

Definition

When $f \in fv$ -fcn(\mathbb{R}^n) its lsc (lower semicontinuous) if $\liminf_{\nu} f(x^{\nu}) < \infty$, then for some subsequence

- if $x \in D$: $\liminf_{\nu} f(x^{\nu}) \ge f(x)$, and

- if
$$x \in \operatorname{cl} D \setminus D$$
: $f(x^{\nu}) \to \infty$

イロン 不得 とくほ とくほう 一座

Epi-limits

Definition

A sequence of functions $\{f^{\nu}, \nu \in \mathbb{N}\}\ epi-converges$ to f when epi $f^{\nu} \to$ epi f as subsets of \mathbb{R}^{n+1} ; f belongs to $f\nu$ -fcn (\mathbb{R}^n) or fcn (\mathbb{R}^n) . One writes $f^{\nu} \stackrel{e}{\to} f$.

- epi f = outer limit of {epi f^{ν} }, then f is the *lower epi-limit*
- epi f = inner limit of {epi f^{ν} }, then f is the upper epi-limit

Theorem

Let $\{f^{\nu}\}_{\nu \in \mathbb{N}}$ be a sequence of functions with domains in \mathbb{R}^n . Then, the lower and upper epi-limits and the epi-limit, are all *lsc.;* the family of *lsc* functions is closed under epi-convergence. If the f^{ν} are convex, so is the upper epi-limit, and the epi-limit, if *it* exists.

Epi-topology

Analytic version

Example

Epi-limits are not necessarily in fv-fcn(\mathbb{R}^n).

$$f^{\nu}(x) = \begin{cases} -\nu^2 x & \text{if } 0 \le x \le \nu^{-1}, \\ \nu^2 x - 2\nu & \text{if } \nu^{-1} \le x \le 2\nu^{-1}, \\ 0 & \text{for } x \ge 2\nu^{-1}, \end{cases}$$

Theorem

C

Let
$$\{f: D \to \mathbb{R}, f^{\nu}: D^{\nu} \to \mathbb{R}\}$$
 in fv-fcn (\mathbb{R}^{n}) . Then, $f^{\nu} \stackrel{e}{\to} f \iff$
(a) $\forall x^{\nu} \in D^{\nu} \to x$ in D , $\liminf_{\nu} f^{\nu}(x^{\nu}) \ge f(x)$,
(a ^{∞}) for all $x^{\nu} \in D^{\nu} \to x \notin D$, $f^{\nu}(x^{\nu}) \nearrow \infty$,
(b) $\forall x \in D, \exists x^{\nu} \in D^{\nu} \to x$ such that $\limsup_{\nu} f^{\nu}(x^{\nu}) \le f(x)$.

・ロト ・回 ト ・ヨト ・ヨト

4

Convergence of solutions

Theorem

Consider a sequence $\{f^{\nu}: D^{\nu} \to \mathbb{R}, \nu \in \mathbb{N}\} \subset \text{fv-fcn}(\mathbb{R}^n)$ epi-converging to $f: D \to \mathbb{R}$, also in $\text{fv-fcn}(\mathbb{R}^n)$. Then

 $\limsup_{\nu\to\infty} (\inf f^{\nu}) \leq \inf f.$

Moreover,

- if $x^k \in \operatorname{argmin}_{D^{\nu_k}} f^{\nu_k}$ for $\{\nu_k\}$ and $x^k \to \overline{x}$, then $\overline{x} \in \operatorname{argmin}_D f$ and $\min_{D^{\nu_k}} f^{\nu_k} \to \min_D f$.
- If argmin_D f is a singleton, then every convergent subsequence of minimizers converges to argmin_D f.

イロン 不良 とくほう 不良 とうほ

Tight epi-convergence

Definition

 $\{f^{\nu}: D^{\nu} \to \mathbb{R}\} \subset fv\text{-fcn}(\mathbb{R}^n) \text{ epi-converges tightly to } f: D \to \mathbb{R},$ when $f^{\nu} \xrightarrow{e} f$ and for all $\varepsilon > 0$, there exist a compact set B_{ε} and an index ν_{ε} such that

$$\forall \nu \geq \nu_{\varepsilon}: \quad \inf_{B_{\varepsilon} \cap D^{\nu}} f^{\nu} \leq \inf_{D^{\nu}} f^{\nu} + \varepsilon.$$

Theorem

 $\{f^{\nu}: D^{\nu} \to I\!\!R\}_{\nu \in I\!\!N} \subset f\nu \cdot \operatorname{fcn}(I\!\!R^n) \text{ epi-converges to } f: D \to I\!\!R \text{ with} \\ \inf_D f \text{ finite. Then, they epi-converge tightly} \\ (a) \iff \inf_{D^{\nu}} f^{\nu} \to \inf_D f. \\ (b) \iff \exists \varepsilon^{\nu} \searrow 0: \varepsilon^{\nu} \cdot \operatorname{argmin} f^{\nu} \to \operatorname{argmin} f.$

Remark: no convergence of dom f^{ν} to dom f.

★週 → ★ 注 → ★ 注 → 一 注

Reconciliation: $f \in fcn(\mathbb{R}^n)$

Define

$$pr-\operatorname{fcn}(\mathbb{R}^n) := \{ f \in \operatorname{fcn}(\mathbb{R}^n) \mid -\infty < f \not\equiv \infty \},\$$

the proper functions in fcn(\mathbb{R}^n); *f* is *proper* if $f > -\infty$ and $f \neq \infty$, i.e., finite on dom *f* (minimization context).

A bijection η between fv-fcn(\mathbb{R}^n) and pr-fcn(\mathbb{R}^n): for $f : D \to \mathbb{R}$, set $\eta f = f$ on D and $\eta f \equiv \infty$ on $\mathbb{R}^n \setminus D$. for $f \in pr$ -fcn(\mathbb{R}^n), $\eta^{-1}f$ = restriction of f to dom f.

Important: this bijection doesn't affect epigraphs. Thus, epi-conv. in fv-fcn(\mathbb{R}^n) \iff epi-conv. in pr-fcn(\mathbb{R}^n).

◆ロ ≻ ◆/理 ≻ ◆ 理 ≻ →

Hypo-convergence

Maximization setting: pass from *f* to -f. Terminology: min to max (inf to sup), ∞ to $-\infty$, epi to hypo, \leq to \geq (and vice-versa), lim inf to lim sup (and vice-versa), and lsc to usc.

Definition

 $f^{\nu} \xrightarrow{h} f$, when $-f^{\nu} \xrightarrow{e} - f$, or equivalently if hypo $f^{\nu} \rightarrow$ hypo f. Hypo-convergence tightly ... The *family of usc functions is closed under hypo-convergence*.

イロン 不得 とくほ とくほう 一座