Multi-Agent Optimization (4)

II. Deterministic models

Variational Inequality technology

Roger J-B Wets
University of California, Davis

Collaborators

* Alejandro Jofré, Universidad de Chile
- Terry Rockafellar, University of Washington
* Michael Ferris, University of Wisconsin

Linear Complementarity Problem

find

$$
\hat{z} \geq 0:\langle\widehat{w}, \hat{z}\rangle=0 \text { and } 0 \leq \hat{w}=M \bar{z}+q
$$

* approximating problem: find

$$
z \geq 0:\langle w, z\rangle=0 \text { and } 0 \leq w=M^{v} z+q^{v} \leq r^{v}
$$

suppose

$$
M^{v} \rightarrow M, q^{v} \rightarrow q, r^{v} \nearrow \infty \text { and } z_{\text {cluserer }}^{v} \bar{z}
$$

* when does it imply
\bar{z} solves LCP? ... under what conditions?

LCP: The approach

define

$$
K(z, v)=\langle M z+q, v-z\rangle \text { on } \mathbb{R}_{+}^{n} \times \mathbb{R}_{+}^{n}
$$

\bar{z} solves LCP: $z \geq 0:\langle w, z\rangle=0$ and $0 \leq w=M z+q$
$\Leftrightarrow \bar{z} \in \arg \max -\inf K \& K(\bar{z}, \cdot) \geq 0$
v \bar{z} solves LCP: $\inf K(z, \bullet)=-\infty$ unless $M z+q \geq 0$ (\bar{z} is such a z) with $M z+q \geq 0, v=0$ is optimal, and

- $0=\max _{z \geq 0}-\langle M z+q, z\rangle$ attained by \hat{z} with $K(\hat{z}, \bullet) \geq 0$
$\bar{z} \in \arg \max -\inf K \& K(\bar{z}, \bullet) \geq 0$
$\Rightarrow \bar{z} \geq 0, M \bar{z}+q \geq 0 \& 0$ potential arg max-inf value since $K(\bar{z}, \bullet) \geq 0 \Rightarrow\langle M \bar{z}+q, \bar{z}\rangle \leq\langle M \bar{z}+q, 0\rangle(v=0)$ $\Rightarrow\langle M \bar{z}+q, \hat{z}\rangle=0$, i.e., \bar{z} solves LCP

LCP:Approximate solutions

$\diamond K^{v}(z, v)=\left\langle M^{v} z+q^{v}, v-z\right\rangle$ on $\mathbb{R}_{+}^{n} \times\left[0, r^{v}\right]^{n}$
$z^{v} \in \arg \max -\inf K^{v}$ with $K^{v}\left(z^{v}, \bullet\right) \geq 0$
$\left(M^{v} \rightarrow M, q^{v} \rightarrow q, r^{v} \nearrow \infty\right) \Rightarrow K^{v} \rightarrow \underset{\text { lop }}{ } K$
$P=\left\{z \in \mathbb{R}_{+}^{n} \mid M z+q \geq 0\right\}, P^{v}=\left\{z \in\left[0, r^{v}\right]^{n} \mid M^{v} z+q^{v} \geq 0\right\}$
When $P^{v} \rightarrow P \Rightarrow K^{v} \underset{\text { lop }}{\rightarrow} K$ ancillary tight

Nonlinear Complementarity Problem

find

$$
\hat{z} \geq 0:\langle\hat{w}, \bar{z}\rangle=0 \text { and } 0 \leq \hat{w}=M(\hat{z})+q
$$

Δ approximating problem: find

$$
z \geq 0:\langle w, z\rangle=0 \text { and } 0 \leq w=M^{v}(z)+q^{v} \leq r^{v}
$$

suppose

$$
M^{v} \rightarrow M, q^{v} \rightarrow q, r^{v} \nearrow \infty \text { and } z_{\text {cluserer }}^{v} \bar{z}
$$

define bivariate functions:

$$
\begin{aligned}
& K(z, v)=\langle M(z)+q, v-z\rangle \text { on } \mathbb{R}_{+}^{\mathrm{n}} \times \mathbb{R}_{+}^{\mathrm{n}} \\
& K^{v}(z, v)=\left\langle M^{v}(z)+q^{v}, v-z\right\rangle \text { on } \mathbb{R}_{+}^{\mathrm{n}} \times\left[0, r^{v}\right]^{n}
\end{aligned}
$$

Arrow-Debreu model

Economy: pure exchange of goods

* agents: $i \in I,|I|$ finite
\checkmark consumption by agent i : $\quad x_{i}$, free disposal
* endowment: e_{i}, strict survivability $\left(\in \operatorname{int} X_{i}\right)$
utility: $u_{i}: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$, concave, insatiability
Survival set: $X_{i}=\operatorname{dom} u_{i}$, convex, not necessarily closed
- exchange at market prices: $p \in \Delta$, unit simplex
* budget constraint: $\left\langle p, x_{i}\right\rangle \leq\left\langle p, e_{i}\right\rangle$

Market Clearing \& Equilibrium

agent's problem: $\bar{x}_{i}(p) \in \arg \max \left\{u_{i}\left(x_{i}\right) \mid\left\langle p, x_{i}-e_{i}\right\rangle \leq 0\right\}$
market clearing: $\sum_{\mathrm{i}}\left(e_{i}-\bar{x}_{i}(p)\right)=s(p) \geq 0$
equilibirum price: \bar{p} such that $s(\bar{p}) \geq 0$
Equilibrium with utility scaling: market clearing with
$s_{l}(\bar{p})=0$ when $\bar{p}_{l}>0$ and $\exists \bar{\lambda}_{i}$ (utility scale factor) so that

$$
\bar{x}_{i} \in \arg \max \left\{u_{i}\left(x_{i}\right)-\bar{\lambda}_{i}\left\langle\bar{p}, x_{i}-e_{i}\right\rangle\right\}
$$

$$
\bar{\lambda}_{i} \geq 0,\left\langle\bar{p}, x_{i}-e_{i}\right\rangle \leq 0 \text { if } \bar{\lambda}_{i}=0
$$

$$
\left\langle\bar{p}, x_{i}-e_{i}\right\rangle=0 \text { if } \bar{\lambda}_{i}>0
$$

Variational representation

$$
\text { V.I.: } \bar{z} \in C,-G(\bar{z}) \in N_{C}(\bar{z})=\{v \mid\langle v, z-\bar{z}\rangle \leq 0, \forall z \in C\}
$$

existence of solutions: C convex compact, G continuous
define $\quad C=\Delta \times\left[\prod_{i \in I} X_{i}\right] \times\left[\prod_{i \in I} \mathbb{R}_{+}\right]$

$$
G: C \rightarrow \mathbb{R}^{n} \times\left[\prod_{i \in I} \mathbb{R}^{n}\right] \times\left[\prod_{i \in I} \mathbb{R}\right]
$$

$G\left(p ; \ldots, x_{i}, \ldots ; \ldots, \lambda_{i}, \ldots\right)$
$=\left(\sum_{i}\left[e_{i}-x_{i}\right] ; \ldots, \lambda_{i} p-\nabla u_{i}\left(x_{i}\right), \ldots ; \ldots, p\left[e_{i}-x_{i}\right], \ldots\right)$

V.I. \& Equilibrium

$\exists\left(\bar{p},\left(\bar{x}_{i}\right),\left(\bar{\lambda}_{\mathrm{i}}\right)\right)$ an equilibirum with utility scaling介

$$
\begin{aligned}
G\left(p,\left(x_{i}\right),\left(\lambda_{i}\right)\right) & =\left[\sum_{i}\left(e_{i}-c_{i}\right) ;\left(\lambda_{i} p-\nabla u_{i}\left(x_{i}\right)\right) ;\left\langle p, e_{i}-x_{i}\right\rangle\right] \\
C & =\Delta \times\left(\prod_{i} X_{i}\right) \times\left(\prod_{i} \mathbb{R}_{+}\right)
\end{aligned}
$$

$$
-G\left(\bar{p},\left(\bar{x}_{i}\right),\left(\bar{\lambda}_{i}\right)\right) \in N_{c}\left(\bar{p},\left(\bar{x}_{i}\right),\left(\bar{\lambda}_{i}\right)\right) \text { has a solution }
$$

C (unfortunately) is unbounded

bounding D : "solvable" V.I.

from C to \hat{C} bounded with explicit bounds derived via duality

(global bound for $X_{i}: \kappa_{i}$ depends on ${ }^{\prime} \operatorname{var}^{\prime}\left(u_{a}\right)$)

$$
\begin{aligned}
& -G\left(\bar{p},\left(\bar{x}_{i}\right),\left(\bar{\lambda}_{i}\right)\right) \in N_{\hat{c}}\left(\bar{p},\left(\tilde{x}_{i}\right),\left(\bar{\lambda}_{i}\right)\right) \\
& \hat{C}=\Delta \times\left(\prod_{i} \hat{X}_{i}\right) \times\left(\prod_{i}\left[0, \kappa_{i}\right]\right)
\end{aligned}
$$

Polyhedral case: efficient algorithmic procedures

Limiting iterative scheme

Theorem. When $\kappa^{v} \geq$ threshold, $\left(p^{v},\left(x_{i}^{v}\right)\right)$ furnish a classical equilibrium w.r.t. X_{i} and u_{i} but possibly with different endowments $\mathrm{e}_{\mathrm{i}}^{v} \geq e_{i}, \mathrm{e}_{\mathrm{i}}^{v} \rightarrow e_{i}$. The sequence of nearby classical equilibria $\left(p^{v},\left(x_{i}^{\nu}\right)\right)$ is bounded and every cluster point $\left(\bar{p},\left(\bar{x}_{i}\right)\right)$ furnishes a virtual equilibirum. When only one virtual equilibirum exists, it's the limit of the sequence.

Proof. Lopsided-convergence applied to V.I. ${ }^{v}$

Consumption \& Production

Consumers: choose $x_{i} \in X_{i}$
Producers: choose $y_{j} \in Y_{j}$
Endowment and shares: $e_{i}+\sum_{j} \theta_{i j} y_{j}, \theta_{i j} \geq 0, \sum_{i} \theta_{i j}=1$
Walrasian Equilibrium: as earlier (adjusted endowments) and $\bar{y}_{j} \in \arg \max \left[\left\langle\bar{p}, y_{j}\right\rangle \mid y_{j} \in Y_{j}\right]$
\Rightarrow V.I. functional type: $-G(\bar{z}) \in \partial f(\bar{z}) \Leftrightarrow \bar{z} \in M(\bar{z})$
$M=(I+\alpha \partial f)^{-1} \circ(I-\alpha G)$, for any $\alpha>0$

Path Solver ... (M.Ferris et al)

$$
\begin{gathered}
-G(\bar{z}) \in N_{C}(\bar{z}), \quad \bar{z}=\left(\bar{p},\left(\bar{x}_{i}\right),\left(\bar{\lambda}_{i}\right)\right) \\
C=\Delta \times\left(\prod_{i} X_{i}\right) \times\left(\prod_{i} \mathbb{R}_{+}\right)=\{z \mid A z \geq b\}
\end{gathered}
$$

Complementarity problem:

$$
-G(z)=A^{T} y, y \geq 0, A z-b \perp y
$$

with $K=\mathbb{R}^{N} \times \mathbb{R}_{+}^{M}$:

$$
\begin{aligned}
& (z, y) \in K, H(z, y) \in-K^{*},(z, y) \perp H(z, y) \\
& H(z, y)=\left[\begin{array}{l}
G(z)+A^{T} y \\
A z
\end{array}\right]-\binom{0}{b}
\end{aligned}
$$

Equivalent nonsmooth mapping

$0=H\left(\operatorname{prj}_{\mathrm{K}}(z, y)\right)+(z, y)-\operatorname{prj}_{\mathrm{K}}(z, y)$
with simplified K :
(CP) $0 \leq x \perp F(x) \geq 0$ Complementarity Problem
(NS) $0=F\left(x_{+}\right)+x-x_{+}$Nonlinear system
\bar{x} sol'n (CP) $\Rightarrow \tilde{x}$ sol'n (NS):

$$
\tilde{x}_{i}=\bar{x}_{i} \text { if } F_{i}(\bar{x})=0, \tilde{x}_{i}=-F_{i}\left(\bar{x}_{i}\right) \text { if } F_{i}(\bar{x})>0
$$

\tilde{x} sol'n (NS) $\Rightarrow \tilde{x}_{+}$sol'n (CP):

$$
\tilde{x}_{+} \geq 0, F\left(\tilde{x}_{+}\right)=\tilde{x}_{+}-\tilde{x} \geq 0 \& \tilde{x}_{+} \perp \tilde{x}_{+}-\tilde{x}
$$

PATH Solver: $\quad x=(z, y), x_{+}=\operatorname{prj}_{K}(x, y)$

- PATH: Newton method based on nonsmooth normal mapping:

$$
H\left(x_{+}\right)+x-x_{+}
$$

Newton point: solution of piecewise linearization:

$$
H\left(x_{+}^{k}\right)+\left\langle\nabla H\left(x_{+}^{k}\right), x_{+}-x_{+}^{k}\right\rangle+x-x_{+}=0
$$

The "Newton" step

May 2007
Banff Summer School

A dynamic problem

Agent's problems: $\max \quad u_{i}^{0}\left(x^{0}\right)+u_{i}^{1}\left(x^{1}\right)$ so that $\left\langle p^{0}, x^{0}+T_{i}^{0} y\right\rangle \leq\left\langle p^{0}, e^{0}\right\rangle$

$$
\left\langle p^{1}, x^{1}\right\rangle \leq\left\langle p^{1}, e^{1}+T_{i}^{1} y\right\rangle
$$

$$
x^{0} \in X^{0}, x^{1} \in X^{1}, y \geq 0
$$

y_{i} activity levels (savings, production technology, ...)
$T_{i}^{0} y_{i}$ input goods, $T_{i}^{1} y_{i}$ output goods

using PATH Solver

\checkmark Economy: (5 goods)

- Skilled \& unskilled workers
- Businesses: Basic goods \& leisure
- Banker: bonds (riskless), 2 stocks

2-stages, solved under \# of scenarios (280) utilities: CES-functions (gen. Cobb-Douglas)

- Utility in stage 2 assigned to financial instruments
- Financial instruments only used for transfer in stage 1
- used for calibration (-> stochastic model) numerically: `blink' (5000 iterations).

