p-ADIC LANGLANDS: LOCAL-GLOBAL COMPATIBILITY

MATTHEW EMERTON

Let E be a finite extension of \mathbb{Q}_p , with valuation ring $\mathcal{O} = \mathcal{O}_E$ and residue field k.

Let $\bar{\rho}: G_{\mathbb{Q}} \to \mathrm{GL}_2(k)$ be unramified outside p, continuous, absolutely irreducible, modular (odd).

Let Spf R be the universal deformation space for lifts of $\bar{\rho}$ unramified outside p. This is a formal scheme over Spf \mathcal{O} . The generic fiber of this space is 3-dimensional. Inside it are points that come from modular forms. Problem: How do you recognize these points (i.e., recognize modular lifts of $\bar{\rho}$ among all lifts)?

p-adic local Langlands (Breuil, Berger, Colmez): Consider

{f.g. smooth admissible $GL_2(\mathbb{Q}_p)$ -representations over a local Artinian \mathcal{O} -algebra A}

(smooth means that every vector is fixed by some congruence subgroup). Colmez's functor MF goes from this to

{f.g. A-module with $G_{\mathbb{Q}_p}$ -action}.

Inside $D_p := \operatorname{GL}_2(\mathbb{Q}_p)$ is the ax + b group $\begin{pmatrix} * & * \\ 0 * 1 \end{pmatrix}$; the restriction of the representations to this subgroup correspond to (ϕ, Γ) -modules.

Let ω be the mod p cyclotomic character.

Theorem 0.1 (Colmez, Emerton). If $\bar{\rho}|_{D_p} \not\simeq twist \otimes \begin{pmatrix} 1 & * \\ 0 * \omega \end{pmatrix}$, then there exists a unique representation $\bar{\pi}$ of $\operatorname{GL}_2(\mathbb{Q}_p)$ over k mapping via MF to $\bar{\rho}$.

p-adic local Langlands conjecture (almost proved by Colmez; incorporating a strategy of Kisin):

- (1) MF induces an equivalence $\operatorname{Def}(\bar{\pi}) \xrightarrow{\sim} \operatorname{Def}(\bar{\rho}|_{D_p})$
- (2) If ρ_p lifts $\bar{\rho}|_{D_p}$ to characteristic 0, and is potentially semistable with Hodge-Tate weights (0, k 1) for some k > 1, then the corresponding π is a completion of $LL(WD(\rho_p)^{\text{F-ss}}) \otimes (\text{Sym}^{k-2} E^2)^{\vee}$. Here WD is the Weil-Deligne representation, and F-ss denotes Frobenius semisimplification, and LL denotes local Langlands.

Granting this, one can form π_R an orthonormalizable *R*-Banach module with $\operatorname{GL}_2(\mathbb{Q}_p)$ action. Consider $\rho_R \otimes_R \pi_R$ with action of $R[G_{\mathbb{Q}} \times \operatorname{GL}_2(\mathbb{Q}_p)]$.

Let

$$\hat{H}^{1}_{\bar{\rho}} = \varprojlim_{s} \varinjlim_{r} H^{1}_{\text{et}}(X(p^{r}), \mathcal{O}/p^{s})_{\bar{\rho}}$$

This is a module with an action of a Hecke algebra $\mathbb{T}[G_{\mathbb{Q}} \times \mathrm{GL}_2(\mathbb{Q}_p)].$

Have $R \twoheadrightarrow \mathbb{T}$, Spf $\mathbb{T} \hookrightarrow$ Spf R (Zariski closure of moduli points).

Conjecture 0.2 (Mazur). $R = \mathbb{T}$.

Date: July 9, 2006.

This has been proved in many cases by Gouvea-Mazur, Böckle, Emerton-Kisin (if p > 2and $\bar{\rho}|_{G_{\mathbb{Q}}(\zeta_{\mathcal{P}})}$ is absolutely irreducible).

Theorem 0.3. Granting (1) and (2) of p-adic local Langlands, so that π_R exists, let

 $X := \operatorname{Hom}_{R[G_{\mathbb{Q}} \times \operatorname{GL}_2(\mathbb{Q}_p)]}(\rho_R \otimes \pi_R, \hat{H}^1_{\bar{\rho}}).$

Then

(a) X is a co-f.g. faithful \mathbb{T} -module. That is, $\operatorname{Hom}_{\mathcal{O}}(X, \mathcal{O})$ are f.g. over \mathbb{T} .

(b) $\rho_{\mathbb{T}} \otimes_{\mathbb{T}} \pi_{\mathbb{T}} \otimes_{\mathbb{T}} X \xrightarrow{\text{ev}} \hat{H}^{1}_{\rho}$ is onto if we tensor with \mathbb{Q}_{p} . (c) ev is an isomorphism, and X is cofree of rank 1 over \mathbb{T} , provided that $\operatorname{End} \bar{\rho}|_{D_{p}} = k$.

This proves some cases of the Fontaine-Mazur conjecture.

NORTHWESTERN UNIVERSITY