GLOBAL GALOIS REPRESENTATIONS ASSOCIATED TO ELLIPTIC CURVES

AARON GREICIUS

Let K be a number field. Let E be an elliptic curve over K. Let $G_K = \operatorname{Gal}(K/K)$ be the absolute Galois group. For each m, we have $\rho_m \colon G_K \to \operatorname{Aut}(E[m]) \simeq \operatorname{GL}_2(\mathbb{Z}/m\mathbb{Z})$. Let $\rho_{\ell^{\infty}} \colon G_K \to \operatorname{Aut}(E[\ell^{\infty}]) \simeq \operatorname{GL}_2(\mathbb{Z}_{\ell})$. Let $\rho \colon G_K \to \operatorname{Aut}(E^{\operatorname{tor}}) \simeq \operatorname{GL}_2(\hat{\mathbb{Z}})$. Let $G := \operatorname{GL}_2(\hat{\mathbb{Z}})$.

On the one hand, $G \simeq \prod_{\ell} \operatorname{GL}_2(\mathbb{Z}_{\ell})$. On the other hand, $G \simeq \varprojlim \operatorname{GL}_2(\mathbb{Z}/n\mathbb{Z})$. Let $\pi_{\ell} \colon G \to \operatorname{GL}_2(\mathbb{Z}_{\ell})$ be the projection. If S is a set of primes, let $\pi_S \colon G \to \prod_{\ell \in S} \operatorname{GL}_2(\mathbb{Z}_{\ell})$. Let $G_{\ell} = \operatorname{GL}_2(\mathbb{Z}_{\ell})$. Let $r_m \colon G \to \operatorname{GL}_2(\mathbb{Z}/m\mathbb{Z})$. For $X \subseteq G$, define $X_{\ell} = \pi_{\ell}(X)$ and $X_S = \pi_S(X)$, and $X(m) = r_m(X)$.

Serre's open image theorem (1972): If E is non-CM, then $\rho(G_K)$ is open in $G = \operatorname{GL}_2(\mathbb{Z})$ (equivalently, of finite index).

One can show (with some work) that the following formulation is equivalent: If E is non-CM, then $\rho_{\ell}(G_K)$ is open for all ℓ and $\rho_{\ell^{\infty}}(G_K) = G_{\ell}$ for $\ell \gg 0$.

Call ℓ exceptional for E if $\rho_{\ell^{\infty}}(G_K) \neq G_{\ell}$. Let c(E, K) be the smallest integer such that for all $\ell \geq c(E, K)$, the representation $\rho_{\ell^{\infty}}$ is surjective. Serve asks if c(E, K) is bounded by a function S(K) of K. For $K = \mathbb{Q}$, the constant $S(\mathbb{Q}) = 41$ is a candidate.

Mazur (1978) showed that for semistable E/\mathbb{Q} , the representation $\rho_{\ell^{\infty}}$ is surjective for $\ell \geq 11$.

Cojocaru (2005) comes up with upper bounds for $c(E, \mathbb{Q})$ in terms of the conductor N_E of E.

Duke (1997) showed that the set of isomorphism classes of E/\mathbb{Q} with no exceptional primes has density 1 with respect to a certain naive height.

When is ρ surjective? Obvious necessary condition: E/K has no exceptional primes. But this is not sufficient. In fact, when $K = \mathbb{Q}$, we have that ρ is *never* surjective. Consider the character sgn obtained as the composition

$$\operatorname{GL}_2(\hat{\mathbb{Z}}) \xrightarrow{r_2} \operatorname{GL}_2(\mathbb{Z}/2\mathbb{Z}) \simeq S_3 \xrightarrow{\operatorname{sgn}} \{\pm 1\}$$

and χ_{Δ} defined as the composition

$$\operatorname{GL}_2(\hat{\mathbb{Z}}) \xrightarrow{\operatorname{det}} \hat{\mathbb{Z}}^{\times} \simeq \operatorname{Gal}(\mathbb{Q}^{\operatorname{ab}}/\mathbb{Q}) \twoheadrightarrow \operatorname{Gal}(\mathbb{Q}(\sqrt{\Delta})/\mathbb{Q}) \hookrightarrow \{\pm 1\}.$$

Let $S_{\Delta} = \ker(\operatorname{sgn} \cdot \chi_{\Delta}^{-1})$. We claim that $\rho(G_{\mathbb{Q}}) \subseteq S_{\Delta}$. Proof: $\sigma \in G_{\mathbb{Q}}$ fixes $\sqrt{\Delta}$ if and only if it induces an even permutation of the roots of the cubic defining E, which holds if and only if $\operatorname{sgn}(\sigma) = 1$.

When $\rho(G_{\mathbb{Q}}) = S_{\Delta}$, we call *E* a *Serre curve*. Nathan Jones (a student of Duke) showed that almost all elliptic curves over \mathbb{Q} are Serre curves.

Date: June 4, 2007.

1. Maximal closed subgroups of $\operatorname{GL}_2(\mathbb{Z})$

Definition 1.1. If G is a topological group, $H \subsetneq G$ (subgroups are closed by convention) is maximal if $H \subsetneq H' \subseteq G$ implies H' = G.

Since G is profinite,

- Every closed subgroup is contained in a maximal subgroup.
- Maximal closed subgroups are open.

Proposition 1.2. Let $G = GL_2(\hat{\mathbb{Z}})$. Let $H \subsetneq G$ be maximal. Then either

- (1) $H_{\ell} \neq G_{\ell}$ for some ℓ , in which case H_{ℓ} is maximal in G_{ℓ} and $H = H_{\ell} \times \prod_{\ell' \neq \ell} G_{\ell'}$; or
- (2) $H_{\ell} = G_{\ell}$ for all ℓ , in which case H contains the closure G' of the commutator subgroup [G, G].

We have $G \xrightarrow{\text{det}} \hat{\mathbb{Z}}^{\times}$ and $G \xrightarrow{\text{sgn}} {\pm 1}$. It turns out that $G' = N \cap \text{SL}_2(\hat{\mathbb{Z}})$ where N := ker(sgn). So the abelianization map is $G \xrightarrow{\text{sgn,det}} {\pm 1} \times \hat{\mathbb{Z}}^{\times}$.

Theorem 1.3. Let $H \leq G$ be a closed subgroup satisfying

- (1) $H_{\ell} = G_{\ell}$ for all ℓ ; and
- (2) $(\operatorname{sgn}, \operatorname{det})|_H$ is surjective.

Then H = G.

Theorem 1.4. Let E/K be an elliptic curve. Then ρ is surjective if and only if

- (1) E has no exceptional primes; and
- (2) $K \cap \mathbb{Q}^{\text{cyc}} = \mathbb{Q}$
- (3) $K(\sqrt{\Delta}) \not\subseteq K^{\text{cyc}}$.

2. Suitable field

Let $K = \mathbb{Q}(\alpha)$ where α is a real root of $x^3 + x + 1$. We have $\Delta_K = -31$, and $\mathcal{O}_K = \mathbb{Z}[\alpha]$, and $\mathcal{O}_K^{\times} = \{\pm 1\} \times \langle \alpha \rangle$, and $\operatorname{Cl}(K) = 1$ (in fact, the narrow class number is 1). Given any E/K, we know det: $\rho(G_K) \to \hat{\mathbb{Z}}^{\times}$ is surjective.

Theorem 2.1. Let $K = \mathbb{Q}(\alpha)$. Let E/K be semistable. Suppose that $\ell \neq 31$. If $\ell = 2, 3, 5$, suppose further that there exists a place $v \in S_E$ such that $\ell \nmid v(j_E)$. Then either $\rho_\ell(G_K) = \operatorname{GL}_2(\mathbb{Z}/\ell\mathbb{Z})$ or

- (1) $\rho_{\ell}(G_K)$ is contained in a Borel subgroup of $\operatorname{GL}_2(\mathbb{Z}/\ell\mathbb{Z})$;
- (2) the semisimplification is a direct sum of the trivial character and the determinant character; and
- (3) For all $v \notin S_E$, the prime ℓ divides $\#E_v(k_v) =: A_v$.

Example 2.2. Define *E* by $y^2 + 2xy + \alpha y = x^3 - x^2$. We have $(\Delta_E) = P_{131}Q_{2207}$ and $N_E = P_{131}Q_{2207}$. The *j*-invariant is of the form $c/P_{131}Q_{2207}$. For $v = Q_{11}$, we have $A_v = 16$. For $v = Q_{23}$, we have $A_v = 15$. This has surjective ρ .