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Primitive integer solutions to xp + y q = z r

Fix p, q, r ∈ Z>0. An integer solution (x , y , z) to
xp + yq = z r will be called primitive if gcd(x , y , z) = 1.
Define

χ := 1/p + 1/q + 1/r − 1.

Generalizations of Fermat’s descent reduce the problem of
determining the primitive integer solutions to the
determination of the rational points on a finite list of curves
(over number fields) whose Euler characteristic 2− 2g is a
positive integer multiple of χ. Therefore:

Theorem (Beukers 1998)

If χ > 0, there are infinitely many primitive solutions,
coming in finitely many parametrized families.

Theorem (Darmon-Granville 1995 + Faltings 1983
(and Fermat and Euler for χ = 0))

If χ ≤ 0, there are at most finitely many primitive solutions.
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Known (p, q, r) cases now solved

(1, q, r)

(2, 2, n)

(2, 3, n) for n ≤ 10

(2, 4, n) for n ≤ 8 and prime n ≥ 211

(2, 2n, 3) for prime 7 < n < 107 with n 6= 31

(2, n, n)

(3, 3, n) for n ≤ 6 and prime 17 ≤ n ≤ 10000

(3, n, n)

(2n, 2n, 5)

(n, n, n)

permutations of all these except (2, 3, 10), (2, 4, 7),
(2, 2n, 3), and (2, 4, n) for prime n ≥ 211,

others that reduce immediately to these

Some of the people involved: Bennett, Beukers, Brown, Bruin, Chen, Darmon, Denes, Edwards,

Ellenberg, Euler, Fermat, Ghioca, Kraus, Kummer, Lucas, Merel, Mordell, P., Schaefer, Skinner, Stoll,

Zagier, based on fundamental work by Breuil, Conrad, Diamond, Frey, Mazur, Ribet, Serre, Shimura,

Taylor, Wiles, etc. (this list could be made much longer)
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The case (p, q, r) = (2, 3, 7) is of especial difficulty because

It achieves the negative value of χ closest to 0, namely

1/2 + 1/3 + 1/7− 1 = −1/42.

There exist solutions, some of which are large.

The exponents are prime, so the equation cannot be
immediately related to one with smaller exponents.
This also prevents solution via elementary factorization
arguments, i.e., descent via (geometrically) abelian
covers. The descent for (2, 3, 7) will involve the simple
group of order 168.

Theorem (P.-Schaefer-Stoll)

There are exactly 16 primitive integer solutions to
x2 + y3 = z7:

(±1,−1, 0), (±1, 0, 1), ±(0, 1, 1), (±3,−2, 1),

(±71,−17, 2), (±2213459, 1414, 65),

(±15312283, 9262, 113), (±21063928,−76271, 17) .
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The highbrow explanation of the (2, 3, 7) descent

(We paraphrase Darmon’s explanation of the descent.)

primitive integer solutions to x2 + y3 = z7

=
integer points on the scheme

S : {x2 + y3 = z7} − {(0, 0, 0)} in A3
Z.

Let’s work over C temporarily:

Gm acts on S by (x , y , z) 7→ (λ21x , λ14y , λ6z).

Stack quotient:

[S/Gm] = P1 with 0, 1,∞ replaced by 1
2 -pt, 1

3 -pt, 1
7 -pt.

χ = −1/42 = Euler characteristic of this stack.

Étale covers of [S/Gm] and hence S can be constructed
by finding Galois covers of P1 with ramification of order
2, 3, 7 above 0, 1,∞.

The Riemann Existence Theorem implies that the
Galois group G should be generated by a, b, c satisfying
a2 = b3 = c7 = abc = 1 (a Hurwitz group).
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(Highbrow explanation, continued)

The smallest nontrivial Hurwitz group is G = PSL2(F7)
(the simple group of order 168).

The corresponding étale cover of the stacky P1 is the
Klein quartic

X : x3y + y3z + z3x = 0 in P2.

In fact, this defines an étale cover over Z[1/42].

Descent reduces the original problem to finding the
Q-points on twists of X by cocycles unramified outside
2, 3, 7. By Hermite, there are finitely many such twists.

Thus the remainder of the proof consists of the following:

1. Find the relevant twists.

2. Find the rational points on these twists.
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Step 1: Finding the relevant twists

We use modularity: X → P1 is the same as X (7) → X (1).

Each twist of X (7) parametrizes elliptic curves with a
nonstandard level-7 structure.

Each solution (a, b, c) to the original equation gives rise
to a “Frey curve” E(a,b,c) with rather special (but not
impossible) 7-torsion, and hence a rational point on a
special twist as above.

Case 1a: Suppose that E(a,b,c)[7] is reducible.

Then the element of H1(GQ,PSL2(F7)) classifying the
twist comes from H1(GQ,B) for the Borel subgroup
B = Γ0(7)/Γ(7) (nonabelian of order 21).

Since B is a semidirect product, we can construct each
such twist in two stages, twisting by a cyclic group each
time.

Since the action on B on the Klein quartic X is known
explicitly, these twists may be constructed explicitly by
Galois descent.
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Case 1b: Suppose that E(a,b,c)[7] is irreducible.

By modularity, there is a newform f associated to
E(a,b,c).

Ribet’s level lowering shows that if E(a,b,c)[7] is
irreducible, then “f ≡ f ′ (mod 7)” for some weight-2
newform f ′ on Γ0(N) with N | 2633 (up to quadratic
twist).

Stein’s tables show that each f ′ is a quadratic twist of
one of 14 newforms f ′′, of which 13 have coefficients in
Z.

The 14th has coefficients in Z[
√

13], in which 7 is inert,
and cannot be congruent mod 7 to a newform with
coefficients in Z.

Thus E(a,b,c)[7] ' E [7] where E is one of the 13 curves
24A1, . . . , 864C1 (up to quadratic twist).
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Recall: X (7) is the smooth projective model of the
Q-variety Y (7) representing the functor

S 7→ {(E ′, φ) : E ′/S elliptic, φ : µ7 × Z/7Z '̂ E ′[7]}

where the '̂ indicates an isomorphism such that∧2 φ : µ7 → µ7 (using the Weil pairing on the right) is
the identity.

Given E/Q, define the twist XE (7) as the smooth
projective model of YE (7) representing

S 7→ {(E ′, φ) : E ′/S elliptic, φ : E [7] '̂ E ′[7]}.

For each a ∈ (Z/7Z)×, there is another twist X a
E (7)

defined as for XE (7), but for which φ transforms the
Weil pairing on E to the ath power of the Weil pairing
on E ′.

The isomorphism type of X a
E (7) is unchanged if a is

multiplied by a square, so as a varies we get only two
curves, which we call XE (7) and X−

E (7).
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Each twist of X (7) is a non-hyperelliptic genus-3 curve
over Q, and hence is given as F (x , y , z) = 0 for some
degree-4 form F .

For E : y2 = x3 + ax + b, an equation for XE (7)
(a form F (x , y , z) with coefficients in Z[a, b])
was given by Halberstadt and Kraus.

Then we noticed that Salmon’s 1879 Treatise on the
higher plane curves gives an order 4 contravariant Ψ−4

of ternary quartic forms; we conjectured and proved
that when it is evaluated at the equation of XE (7), it
gives X−

E (7).

Thus we can write down XE (7) and X−
E (7) for each of the

13 elliptic curves over Q.
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Step 1, continued: maps to P1

We need explicit equations not only for the twists of X (7),
but also for their degree-168 maps to P1 given by the
j-invariant, so that given points on these twists, we can
compute the associated j-invariants and hence the
associated primitive solutions to x2 + y3 = z7.

To find the maps, we exploit the fact that they are
PSL2(F7)-invariant.

Specifically, we construct them as ratios of covariants of
ternary quartic forms.

If F = 0 is the equation of a twist X (7)′ in P2, then the
map is

X (7)′ −→ P1

(x : y : z) 7−→ Ψ14(F )3

Ψ0(F ) Ψ6(F )7
,

where the Ψi are covariants.
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Step 1, continued: the local test

For each of the finitely many twists constructed, we
check whether for every prime p it has Qp-points that
give rise to Zp-points on S ; if not, it gives no primitive
integer solutions to x2 + y3 = z7 so we discard it.

We are left with 10 genus-3 curves whose rational
points we must find.
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The 10 genus-3 curves

C1 : 6x3y + y3z + z3x = 0

C2 : 3x3y + y3z + 2z3x = 0

C3 : 3x3y + 2y3z + z3x = 0

C4 : 7x3z + 3x2y2 − 3xyz2 + y3z − z4 = 0

C5 : −2x3y − 2x3z + 6x2yz + 3xy3 − 9xy2z + 3xyz2 − xz3 + 3y3z − yz3 = 0

C6 : x4 + 2x3y + 3x2y2 + 2xy3 + 18xyz2 + 9y2z2 − 9z4 = 0

C7 : −3x4 − 6x3z + 6x2y2 − 6x2yz + 15x2z2 − 4xy3 − 6xyz2 − 4xz3 + 6y2z2 − 6yz3 = 0

C8 : 2x4 − x3y − 12x2y2 + 3x2z2 − 5xy3 − 6xy2z + 2xz3 − 2y4 + 6y3z + 3y2z2 + 2yz3 = 0

C9 : 2x4 + 4x3y − 4x3z − 3x2y2 − 6x2yz + 6x2z2 − xy3 − 6xyz2 − 2y4 + 2y3z

− 3y2z2 + 6yz3 = 0

C10 : x3y − x3z + 3x2z2 + 3xy2z + 3xyz2 + 3xz3 − y4 + y3z + 3y2z2 − 12yz3 + 3z4 = 0

Example

The rational point (0, 1, 1) on C7 gives rise to

210639282 + (−76271)3 = 177.
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Step 2: Determining Ci(Q)

Theorem (Faltings 1983, reproved by Vojta 1991)

If X is a curve of genus ≥ 2 over a number field k, then
X (k) is finite.

With work, the proofs of Faltings and Vojta give an
upper bound on #X (k), but this does not let one
compute X (k), even in principle.

In fact, no current algorithm is known to determine
X (k) in general, even for genus-2 curves over Q.

Nevertheless, there are methods, independent of the
proofs of Faltings and Vojta, that sometimes succeed
for individual curves.
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Let Ji be the Jacobian of Ci .

Step 2a: Determine the rank of Ji (Q).

The rank is determined by 2-descent, a 2-Selmer group
computation.

It is not yet known how in practice to compute 2-Selmer
groups of general genus-3 Jacobians: the most obvious
methods require the class group of a number field
obtained by adjoining the coordinates of at least one
point of J[2], but such a number field is generically of
degree 63. (There is, however, work in progress by
Bruin, Flynn, P., and Stoll, showing that one can get by
with degree-28 class groups.)

So we developed a method especially for twists of X (7):
the geometry of X (7) shows that the Galois action on
Ji [2] looks like the Galois action on the 2-torsion of a
hyperelliptic genus-3 Jacobian. Then only degree-8
class groups are required.
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Step 2b: Use Chabauty’s method to determine Ci (Q)
for i 6= 5
By adapting Skolem’s p-adic method for solving S-unit
equations, Chabauty proved

Theorem (Chabauty 1941)

Let X be a curve of genus g over a number field k. Let
J = Jac X. If rank J(k) < g, then X (k) is finite.

Coleman and others showed how to refine this into an
effective method for determining X (k), when J(k) is
known.

For i 6= 5, we have rank Ji (Q) < 3 and Chabauty’s
method determines Ci (Q).

For i = 5, we have rank J5(Q) = 3 and Chabauty’s
method gives no information.
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Step 2b’: Use the Brauer-Manin obstruction (sieving
out residue classes) to attempt to determine C5(Q)

Let C = C5 and J = J5.
Embed C in J.
It is hard to determine which points of J(Q) lie on C .
But for a prime p of good reduction, we can determine
the subset of points of J(Q) whose image in J(Fp) lies
in C (Fp). (It will be a union of cosets of a finite-index
subgroup of J(Q).)
If the intersection of these subsets over several p is
empty, then we know that C (Q) is empty. (This turns
out to be a special case of the Brauer-Manin
obstruction, modulo finiteness of X(J).)

C (Q) //

��

∏
p∈S C (Fp)

��
J(Q) //

∏
p∈S J(Fp).

This doesn’t work, since C (Q) is nonempty.
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In fact, even today we still don’t know C (Q). We got
around this problem as follows:

Points in C (Q) give rise to solutions that are primitive
away from 2 and 3, but there are 2-adic and 3-adic
conditions that must be satisfied to obtain truly
primitive solutions.

Thus we need only determine the points in C (Q)
satisfying these conditions.

We show that there are none, by incorporating these
conditions into the sieve on the previous slide.

Since p = 2 and p = 3 are bad for C , in the sieve we
must replace C (Fp) ↪→ J(Fp) by Csmooth(Fp) ↪→ J (Fp),
where Csmooth is the smooth locus of the minimal proper
regular model of C at p, and J is the Néron model of J.



x2 + y3 = z7

Bjorn Poonen

Advertisement

xp + yq = zr

General theorems

Known cases

Why 2,3,7?

Descent

Etale covers of a stack

Klein quartic

1. Finding twists

Reducible 7-torsion

Irreducible 7-torsion

Degree-168 map

Local test

10 curves

2. Rational points

Faltings & Vojta

Mordell-Weil rank

Chabauty’s method

Brauer-Manin
obstruction

x2 + y3 = zp

Reducible p-torsion

Irreducible p-torsion

Example

For p = 2, after iteratively blowing up the initial model eight
times, one finds that the special fiber at 2 of the minimal
proper regular model of C5 is

F

2

I
E

2
B

4

H
4
K

4

M
4
O

4

P

4
N

4

L

A

3
J

2

G

2
D

C

Combining the sieve information from the bad primes 2
and 3 with the sieve information from the good primes
13, 23, and 97, one rules out rational points in the
relevant 2-adic and 3-adic regions.

This completes the proof. �
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x2 + y 3 = zp for p > 7?

Our approach generalizes to reduce the study of
x2 + y3 = zp for p > 7 to the determination of rational
points on twists of X (p).

Some steps become easier, but others become harder.

Each solution gives rise to a Frey curve E as before.

Case 1: Reducible E [p].

The reducible E [p] case becomes almost trivial for
p > 7 with p 6= 13, since there are only finitely many
j-invariants of elliptic curves over Q with reducible E [p]
(and none at all for p > 163).

The reducible E [13] case should also be easy: one can
reduce to studying rational points on a finite list of
twists of the genus-2 curve X1(13).
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Case 2: Irreducible E [p].

Modularity and level lowering apply as before.

In fact, the 14 newforms are the same as before.

The 14th newform can be excluded for all p 6= 13 using
a method I learned from a paper by Calegari: a given
newform with non-integral coefficients can be congruent
mod p to a newform with integral coefficients only for a
finite, effectively determinable list of p.

Hence one reduces to determining XE (p) and X−
E (p) for

the same 13 elliptic curves E as before (plus a problem
with the 14th newform if p = 13).

This may be difficult, however, since the genus is much
larger (already g = 26 for p = 11), and again some of
these curves have relevant points.

Example

For any p, we have the primitive solution 32 + (−2)3 = 1p,
associated to E = 864B1.
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