
Abstracts for BIRS Workshop on Entropy Rate of Hidden
Markov Processes and Connections to Dynamical Systems

MONDAY:

• T. Weissman (EE, Stanford):
Title: Overview of entropy rate of HMP’s.

Abstract: I will present an overview on the entropy rate of hidden
Markov processes (HMP’s), information and coding-theoretic motiva-
tion for its study, and some of its connections to dynamical systems,
to non-linear filtering, and to statistical physics. Particular attention
will be given to:
– Alternative representations: via the Blackwell measure, as a Lya-
punov exponent, and as a partition function in statistical physics.
– Bounds and approximations (stochastic and deterministic), and their
complexity-precision tradeoffs.
– Asymptotic regimes and analyticity.

• M. Boyle (Math, Maryland):
Title: Overview of Markovian maps

Abstract: A topological Markov shift is the support of a Markov chain
(measure); that is, it is the set of infinite sequences all of whose fi-
nite subwords have strictly positive probability (measure). A topologi-
cal Markov shift can support many different Markov chains, including
higher-order chains (on which the past and future become independent
after conditioning on finitely many steps in the past).
Now let f be a sliding block code from a topological Markov shift S onto
another topological Markov shift T. We assume S is irreducible (it is
the support of an irreducible/ergodic Markov chain).
Then there is a dichotomy: either every Markov measure on T lifts (via
f) to a Markov measure on S, or every Markov measure on T does not
lift to a Markov measure on S. In the former case, the map f is called
Markovian. The Markovian condition is a thermodynamic phenomenon
and is the first of a range of conditions on the regularity of the map f.
I will try to explain this condition, the related conditions, and related
work due to myself, Petersen, Quas, Shin, Tuncel, Walters and others.
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• E. Verbitsky (Philips-Eindhoven):
Title: Thermodynamics of Hidden Processes

Abstract: Hidden Markov processes have a number of very strong prop-
erties. I will argue that some of these properties can be explained using
the language of Statistical Mechanics and Thermodynamic Formalism.
For similarly defined hidden Markov random fields (d¿1) the picture is
much more complex. I will illustrate it with a number of examples and
open questions.

• B.H. Juang (ECE, Georgia Institute of Technology):
Title: Hidden Markov Model and its Application in Speech Recognition
– A Tutorial.

Abstract: Speech signals are produced everyday and are considered
one physical-behavioral phenomenon that is most unique and intrigu-
ing. A speech signal carries a code that can be understood (decoded)
by the listener but the same code may be realized as acoustic signals
with vastly different physical properties. Variations across pitch, power
level, prosodic manifests, and talker (including gender, the articula-
tory apparatus, etc.) are observed to be wide and broad. The hidden
Markov model/process has been successfully developed as an effective
modeling tool for this rather complex signal in several applications,
most notably automatic speech recognition. In this talk, we present
justifications for use of hidden Markov process for speech modeling,
elaborate the mathematical development of such a tool over the past
two decades, and discuss applications of this mathematical formalism
in practical systems that are in use in our daily life.

TUESDAY:

• E. Ugalde (Math, Universida Autonama de San Luis Potosi):
Title: On Gibbs measures and lumped Markov chains

Abstract: Gibbs measures are fully determined by continuous functions
or potentials, and admit a nice thermodynamic characterization. In
the symbolic case, for finite type or sofic subshifts, they may arise as
measures induced from Markovian ones, after amalgamation of symbols
in the original alphabet. We have found sufficient conditions for the
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induced measure to be Gibbsian, and under those conditions we are
able to determine the nomalized potential of the measure. Even tough
in general the measure induced by amalgamation of symbols is not
Gibbsian, an induced potential can be defined almost everywhere. The
induced measure admits therefore a thermodynamic characterization.
(joint work with J.-R. Chazottes)

• O. Zuk (Physics of Complex Systems, Weizmann Institute):
Title: HMP’s Entropy Rate - Statistical Mechanics and Taylor Series
Expansions

Abstract: Hidden Markov Models are very similar to models encoun-
tered in statistical physics - specifically the Ising model in a random
field. In this talk I will discuss the similarities and differences between
the two models.
I will also describe our asymptotic results for the entropy rate and other
quantities of interest in both models in various regimes, including an
algorithm for calculating the Taylor series coefficients of the entropy
rate.
I will end with numerical results and conjectures for the radius of con-
vergence of the Taylor expansion. (based on joint work with E. Do-
many, I. Kanter and M. Aizenman).

• A. Montanari (EE, Stanford):
Title: The rank of random band diagonal matrices in the Kac limit

Abstract: Consider a stream of iid Bernoulli(1/2) xt. At time t, you
observe the mod 2 sum

yt = xi1(t) + .... + xik(t)

where i1, .., ik are uniformly random in [i − R, i + R], through an era-
sure channel. Further you know i1, ...ik. I provide several estimates of
H(X t|Y t)/t in the large R limit. In physics this is known as the Kac
limit after the seminal work of Marc Kac.

• E. Ordentlich (HP-Labs, Palo Alto):
Title: Deterministic algorithms for computing/approximating the HMP
entropy rate.

Abstract: We survey known deterministic algorithms for approximating
the entropy rate of hidden Markov models. We will consider the well
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known approach based on truncated conditional entropies as well as
less studied approaches based on quantized likelihood processes. The
various approaches will be compared on a complexity versus accuracy
basis, to the extent that this tradeoff is known.

• P. Cuff (EE, Stanford):
Title: Entropy Rates of Hidden Markov Processes emerge from Black-
well’s Trapdoor Channel

Abstract: Blackwell’s trapdoor channel is a simple channel with mem-
ory that has been widely investigated during the past four decades.
The non-feedback channel capacity has not been solved analytically,
but we find the feedback capacity to be the logarithm of the golden
ratio.
During the investigation of the trapdoor channel we find that, with the
assistance of feedback, the channel can be transformed into an equiv-
alent memoryless channel with a constrained input. A Markov source
as input satisfies the constraints, but calculating the resulting mutual
information requires finding the entropy rate of a Hidden Markov pro-
cess.
In hindsight, after finding the capacity of the trapdoor channel with
feedback, we recognize that we can express the entropy rate of a partic-
ular class of Hidden Markov processes in closed form. This is the class
of Hidden Markov processes for which the conditional entropy rate of
the states given the observations is zero, so the entropy rate is that of
the joint states and observations, which is a Markov process. We will
comment on relations between the HMP transition probabilities and
satisfiability of said conditional entropy rate condition.

WEDNESDAY:

• D. Guo (EECS, Northwestern):
Title: On The Entropy and Filtering of Hidden Markov Processes Ob-
served Via Arbitrary Channels

Abstract: We study the entropy and filtering of hidden Markov pro-
cesses (HMPs) which are discrete-time binary homogeneous Markov
chains observed through an arbitrary memoryless channel. A fixed-
point functional equation is derived for the stationary distribution of
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an input symbol conditioned on all past observations. While the ex-
istence of a solution to this equation is guaranteed by martingale the-
ory, its uniqueness follows from contraction mapping property. In or-
der to compute this distribution, the fixed-point functional equation
is firstly converted to a linear system through quantization and then
solved numerically using quadratic optimization. The entropy or dif-
ferential entropy rate of the HMP can be computed in two ways: one
by exploiting the average entropy of each input symbol conditioned on
past observations, and the other by applying a relationship between
the input-output mutual information and the stationary distribution
obtained via filtering.

• W. Slomczynski (Jagiellonian University):
Title: Entropy integral formula: from hidden Markov processes to quan-
tum systems.

Abstract: We investigate the notion of dynamical entropy (or entropy
rate) in the context of the statistical (or operational) approach to dy-
namical systems. In this approach we can distinguish the kinematical
and dynamical parts. In kinematics we define states of the system and
observables, and in dynamics, the evolution operators describe changes
of the state. Moreover, we describe mathematical objects depicting
measurement procedures, called measurement instruments. This ap-
proach makes it possible to describe both classical and quantum phe-
nomena by a single mathematical formalism. States are defined as the
positive elements of the unit sphere in a certain ordered vector space
and evolution operators as Markov (stochastic) operators in this space.
By an equilibrium we mean a fixed point of a given Markov operator.
We present a method of computing entropy rate based on an integral
formula. This method enables us to generalise some old formulae for
dynamical entropy and to prove new ones, to work out numerical meth-
ods for computing entropy, and to investigate the basic properties of
dynamical systems.
The reasoning leading to the proof of the integral formula is based on:
attributing an iterated function system to each dynamical system and
measurement instrument, investigating the properties of the iterated
function system guaranteeing the existence and the uniqueness of an
invariant measure, and justifying the integral formula using the prop-
erties of the iterated function system.
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Integral formulae for entropy rate were previously shown in particular
cases, where the state space was finite-dimensional, by David Blackwell
for functions of a Markov chain and by Mark Fannes, Bruno Nachter-
gaele and Leo Slegers for the so-called algebraic measures. Here we
present a unified approach to the problem and show general results
utilising two techniques: the first uses the compactness of subsets of the
state space in certain weak topologies, the second is based on employing
the projective metric in the state space. Applying these methods, we
obtain results concerning iterated function systems on the state space
and dynamical entropy for many concrete state space types.
Applications of the integral formula include hidden Markov processes,
kernel operators, Frobenius-Perron operators, and quantum systems
(Srinivas-Pechukas-Beck-Graudenz entropy, quantum jumps, coherent
states entropy).

THURSDAY:

• Y. Peres (Microsoft):
Title: Analyticity of Lyapunov exponents

Abstract: I will describe the relevance of the entropy of HMM and
of Lyapunov exponents to determining dimension of slices and projec-
tions of fractals, then survey the analyticity of Lyapunov exponents via
the polynomial approximation approach, the significance of obtaining
explicit domains of analyticity and the Hilbert metric. Finally, I will
work out a simple but illuminating example of integration with respect
to coin tossing measures and determine a domain of analyticity there.

• G. Han (Math, Hong Kong U.):
Title: Analyticity and Derivatives of entropy rate for HMP’s

Abstract: We prove that under mild positivity assumptions the entropy
rate of a hidden Markov chain varies analytically as a function of the
underlying Markov chain parameters. A general principle to determine
the domain of analyticity is stated. We also show that under the pos-
itivity assumptions the hidden Markov chain itself varies analytically,
in a strong sense, as a function of the underlying Markov chain param-
eters. For a natural class of hidden Markov chains called ”Black Hole”,
we show that one can exactly compute any derivatives of entropy rate.
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• H. Pfister (ECE, Texas A& M):
Title: The Derivatives of Entropy Rate and Capacity for Finite-State
Channels

Abstract: This talk discusses a number of topics related to the entropy
rate and capacity of finite-state channels. A simple formula is given
for the derivative of the entropy rate and it is used to compute closed-
form expansions for the channel capacity in the high noise regime. The
relationship between this formula and previous results is discussed.
The derivative formula is then extended to the Lyapunov exponent of a
sequence of random matrices. In particular, we discuss i.i.d., Markov,
and hidden Markov matrix sequences. The last case is closely related to
the derivative of the divergence between two hidden Markov processes.
The talk concludes with a short discussion of ergodic properties and
mixing conditions of the forward Baum-Welch (a.k.a. BCJR) algo-
rithm.

• P. Vontobel (HP-Labs, Palo Alto):
Title: Optimizing Information Rate Bounds for Channels with Memory

Abstract: We consider the problem of optimizing information rate up-
per and lower bounds for communication channels with (possibly large)
memory. A recently proposed auxiliary-channel-based technique allows
one to efficiently compute upper and lower bounds on the information
rate of such channels.
Towards tightening these bounds, we propose iterative expectation-
maximization (EM) type algorithms to optimize the parameters of the
auxiliary finite-state machine channel (FSMC). We provide explicit so-
lutions for optimizing the upper bound and the difference between the
upper and the lower bound and a method for the optimization of the
lower bound for data-controllable channels with memory. We discuss
examples of channels with memory, for which application of the devel-
oped theory results in noticeably tighter information rate bounds.
Interestingly, from a channel coding perspective, optimizing the lower
bound is related to increasing the achievable mismatched information
rate, i.e. the information rate of a communication system where the
maximum-likelihood decoder at the receiver is matched to the auxiliary
channel and not to the true channel.
(This talk is based on joint work with Parastoo Sadeghi (ANU) and
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Ramtin Shams (ANU).)

• P. Jacquet (INRIA):
Title: Entropy of HMP and asymptotics of noisy input-constrained
channel capacity

Abstract: In this talk, we consider the classical problem of noisy con-
strained capacity in the case of the binary symmetric channel (BSC),
namely, the capacity of a BSC whose input is a sequence from a con-
strained set. We derive an asymptotic formula (when the noise param-
eter is small) for the entropy rate of a hidden Markov chain, observed
when a Markov chain passes through a binary symmetric channel. Us-
ing this result we establish an asymptotic formula for the capacity of
a binary symmetric channel with input process supported on an irre-
ducible finite type constraint, as the noise parameter ε tends to zero.
For the (d, k)-Run Length Limited (RLL) constraint, we show that
when k ≤ 2d, the difference between the noisy capacity and noiseless
capacity is O(ε) and when k¿2d, it is O(ε log ε) with explicitly com-
putable constants (joint work with G. Han, B. Marcus, G. Seroussi,
and W. Szpankowski).

FRIDAY:

• A. Kavcic (ECE, Hawaii):
Title: Markov and hidden Markov Processes in communication chan-
nels used with feedback

In this talk, we consider finite memory communications channels (finite-
state channels, or state-space representable channels). Such channels
are reasonably good models for magnetic and optical data storage, wire-
less communications in multipath environments, and communications
through band-limited media. The channel capacity is typically obtained
by optimizing the channel input process to maximize the entropy of
the channel output. If the channel input is a Markov process, then the
channel output is a hidden Markov process, and the problem is equiv-
alently stated as the maximization of the entropy of a hidden Markov
process. It is well known that even if the channel has finite memory,
the channel capacity is generally not attained by a finite-memory chan-
nel input process, so generally, finite-memory Markov processes do not
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achieve the capacities of finite-memory channels. However, if feedback
from the receiver to the transmitter is utilized, then a certain class of
finite-memory conditionally Markov sources do achieve the feedback ca-
pacities of finite-memory channels. We establish some basic results for
this case: 1) Finite-memory conditionally Markov sources achieve the
capacities of finite-memory channels, 2) The optimal processor of the
feedback is the forward recursion of the sum-product algorithm (i.e, the
forward recursion of the Baum-Welch algorithm, or the Kalman-Bucy
filter, depending on the application), 3) This generalizes Shannon’s
well-known result that memoryless sources achieve the (feedback) ca-
pacities of memoryless channels, i.e., we now have that finite-memory
conditionally Markov sources achieve the capacities of finite-memory
channels. An interesting consequence is that decoders for codes that
achieve feedback capacities need not utilize long buffer memories, but
rather the decoders can be implemented using extremely simple de-
tection/estimation techniques already available in the statistical signal
processing literature. We give several examples of how this applies
to some well-known single-input-single-output channels. Further, we
consider the open problem of establishing the capacity (or capacity
bounds) for the relay channel, and show that similar results apply for
relay channels with either deterministic or randomly fading finite in-
tersymbol interference memory.

• M. Pollicott (Math, Warwick):
Title: Computing integrals, Lyapunov exponents and entropy using cy-
cle expansions

Abstract: I will describe an approach which is based upon the study of
certain analytic functions (called dynamical determinants) and studied
by Ruelle. In certain cases, some of the above quantities can be ”read
off” from these functions. Using some classical ideas on determinants
(originating with Grothendeick in the 1950s) one can rapidly approx-
imate these analytic functions by polynomials. ”Cycle expansions”
refers to the explicit method, used by Cvitanovic et al, for comput-
ing these polynomials (and thus computing numerically the associated
quantities).
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