Valuation of Energy Storage: An Optimal Switching Approach

Mike Ludkovski Department of Mathematics University of Michigan

Banff Workshop, May 9, 2007 Joint work with Rene Carmona, Princeton University

- Unlike financial "paper" assets, commodities must be physically stored.
- Storage infrastructure is a major component of the energy industry.
- Large-scale needs; very capital intensive.
- Storage allows intertemporal transfer.
- Financially, storage is a straddle on calendar prices.
- Can be used to speculate: commodity prices fluctuate, aim is to buy low and sell high (and store in between).

Examples

- Natural Gas Storage: salt domes, pipelines, depleted reservoirs, aquifers.
- This is already a multi-billion industry with active trading.
- Poised for further growth with rolling-out of Liquified Natural Gas on world-wide basis.
- Hydroelectric Pumped Storage.
- The most scalable method of storing electricity; about 75% efficiency; 38 plants in the US, worldwide capacity of almost 50 GWh.
- Resource management. Metal/fossil fuel is "stored" in the ground, with one-way inventory depletion. Further exploration permits possibility of "replenishment".

- Commodity prices are stochastic
- Strong seasonality effects
- Possibility of both forward and spot trades
- Engineering constraints/exogenous events
- Margin requirements on borrowed funds
- Inventory-dependent Injection/withdrawal rates
- Storage costs/switching costs

- We focus on the timing optionality within a real-options framework.
- The presence of inventory makes the problem highly path-dependent!
- Concentrate on the gas storage application.
- The two key state variables are (G_t) gas prices (stochastic).
- (C_t) current inventory of gas (a function of manager's policy).

- (*G_t*) is exogenously given and is a *d*-dimensional Markov process.
- Inventory constraints: $c_{min} \leq C_t \leq c_{Max}$.
- At each instant t, choose an operating regime: ut —rate for amount of gas to inject/withdraw.
- Transmission constraints: $a_{min} \le u_t \le a_{Max}$.
- Resulting *inventory* path $\bar{C}_t(u)$:

$$d\bar{C}_s(u) = a_{u_s}(\bar{C}_s(u)) ds, \qquad \bar{C}_0(u) = c.$$

- Fixed horizon *T*: typically the facility is rented from the owner and must be returned at a later date.
- \implies Set of admissible policies $u \in \mathcal{U}(c)$.

Control Problem

- The manager maximizes total revenue on [0, *T*].
- When operating regime is *i*, rate of revenue is $\psi_i(t, G_t, C_t)$.
- When operating regime is changed from *i* to *j*, switching costs K_{i,j}(G_t, C_t) are paid.
- Let *V*(*t*, *g*, *c*, *i*) denote maximum expected future profit given the initial conditions.
- Wish to find

$$V(0, g, c, i) = \sup_{u \in \mathcal{U}} \mathbb{E} \left[\int_0^T \psi_{u(t)}(G_t, C_t) dt - \sum_{t \leq T} \mathcal{K}_{u_{t-}, u_t} \right].$$

Bellman Principle:

$$V(0, g, c, i) = \sup_{u} \mathbb{E}\left[\int_{0}^{t} \psi_{u(s)}(G_{s}, C_{s}) ds - \sum_{s \leq t} K_{u_{t-}, u_{t}} + V(t, G_{t}, \bar{C}_{t}(u), u_{t})\right]$$

<日 ▶ かへで 7/33

Because payoffs are *linear* in u_t , controls are necessarily of bang-bang type, so the only choices are $u_t \in \mathcal{I} \triangleq \{a_{min}, 0, a_{Max}\}$. So a priori have a finite-dimensional control space. \implies Three possible operational states

inject $dC_t = a_{inj}(C_t)dt$, $\psi_{-1}(G_t, C_t) = -b_{-1}(C_t) - a_{inj}(C_t) \cdot G_t$ store $dC_t = 0$, $\psi_0(G_t, C_t) = -b_0(C_t)$ withdraw $dC_t = -a_{wdr}(C_t)dt$, $\psi_1(G_t, C_t) = -b_1(C_t) + a_{wdr}(C_t) \cdot G_t$

 b_i 's are the O&M costs, storage costs, transmission inefficiencies, etc.

Example

• 1-d Exponential OU model:

$$d\mathbf{G}_t = \kappa (\bar{\mathbf{g}} - \log \mathbf{G}_t) \mathbf{G}_t \, dt + \sigma_{\mathbf{G}} \mathbf{G}_t \, dW_t$$

• Mean-reverting, log-normal, non-negative (Jaillet et al. 2004).

• Terminal condition reflects stipulations for final inventory:

$$V(T,g,c,i) = -2g \cdot \max(\underline{c} - c, 0).$$

Gas pressure laws:

$$a_{wdr}(c) = k_0 \sqrt{c}, \quad a_{inj}(c) = k_1 \sqrt{\frac{1}{c+k_2} - \frac{1}{k_3}}.$$

- Real Options: Brennan and Schwartz (1985), Dixit and Pindyck (1994), Insley (2003).
- Approaches based on pde methods: Ahn et al. (2002), de Jong and Walet (2003).
- Stochastic Programming: Jacobs et al. (1995), Doege et al. (2006).
- Optimal Switching (w/out inventory): Zervos (2003), L. and Carmona (2005), Barrera-Esteve et al. (2006).

- The operational flexibility of the manager is a compound timing option. Under mild assumptions can show that will only make a finite number of changes in the optimal policy.
- ⇒ Recursively define $V^k(t, g, c, i)$ for $k = 0, 1, ..., 0 \le t \le T$, $g \in \mathbb{R}^d$, $c \in [c_{min}, c_{max}]$ and $i \in \{-1, 0, 1\}$:

$$\begin{split} V^{0}(t,g,c,i) &\triangleq \mathbb{E}\Big[\int_{t}^{T}\psi_{i}(s,G_{s},\bar{C}_{s}(c,i))\,ds\Big|\,G_{t}=g\Big],\\ V^{k}(t,g,c,i) &\triangleq \sup_{\tau\in\mathcal{S}_{t}}\mathbb{E}\Big[\int_{t}^{\tau}\mathrm{e}^{-r(s-t)}\psi_{i}(s,G_{s},\bar{C}_{s}(c,i))\,ds\\ &+\max_{j\neq i}\big\{-K_{i,j}+V^{k-1}(\tau,G_{\tau},\bar{C}_{\tau}(c,i),j)\big\}\mathrm{e}^{-r(\tau-t)}\Big|\,G_{t}=g\Big]. \end{split}$$

Iterative Optimal Stopping Problems.

Proposition

- V^k is equal to the value function for the storage problem with at most k regime switches allowed.
- 2 An optimal finite strategy $u^* = (\tau_1^*, \xi_1^*, \tau_2^*, \xi_2^*, \cdots)$ for $V^k(0, g, c, i)$ exists and is: $\tau_0^* = 0, \xi_0^* = i$, and for $\ell = 1, \ldots, k$

$$\begin{cases} \tau_{\ell}^* \triangleq \inf \Big\{ s \geq \tau_{\ell-1}^* \colon V^{\ell}(s, G_s, C_s(u^*), i) \\ = \max_{j \neq i} \big(-K_{i,j} + V^{\ell-1}(s, G_s, C_s(u^*), j) \big) \Big\} \land T \\ \xi_{\ell}^* \triangleq \arg \max_{j \neq i} \big\{ -K_{i,j} + V^{\ell-1}(\tau_{\ell}^* -, G_{\tau_{\ell}^* -}, C_{\tau_{\ell}^* -}(u^*), i). \big\} \end{cases}$$

<日 > つくで 12/33

The classical analytic theory (Øksendal and Sulem, 2005) implies that the value function is also the (unique viscosity) solution of the Quasi-Variational Inequality

$$\begin{cases} \min\left\{-V_t - \mathcal{L}_{\mathbf{G}}V(t, g, c, i) + a_i(c) \cdot \partial_c V(t, g, c, i) \\ -\psi_i(g, c) + rV(t, g, c, i), \quad V(t, g, c, i) - \max_{j \neq i}(V(t, g, c, j) - \mathcal{K}_{i,j})\right\} = 0. \\ V(T, g, c, j) \quad \text{given.} \end{cases}$$
(1)

Assuming a smooth *V* this can then be implemented with a free boundary pde solver.

The problem (1) is degenerate (convection-dominated).

Numerical Algorithm

- Discretize time: decisions are now made only at $t = m\Delta t$.
- Then to make a decision today compute

$$V(t, G_t, C_t, i) = \max_j \left(-K_{i,j} + \mathbb{E} [\psi_{t,t+1}(G_t, C_t, j) + e^{-r\Delta t} \cdot V(t+1, G_{t+1}, \overline{C}_{\Delta t}(C_t, j), j) | \mathcal{F}_t] \right).$$

• Can apply Dynamic Programming backward in time once can do the conditional expectation against the Markov state *G*.

Tsitsiklis-van Roy and Longstaff-Schwartz Pricing Methods for Optimal Switching

- Simulate $\{g_t^n\}_{n=1}^N$ and work with path values $v(s, g_s^n)$.
- Given future path values { $v(t + 1, g_{t+1}^n; j)$ } and associated rewards { $\psi_{t,t+1}(g_t^n; j)$ }, regress their sum onto { g_t^n } to find out the continuation value $\tilde{E}(g_t^n; j)$ for each action *j*.
- Find best action *i** for each path.
- TvR then sets $v(t, g_t^n; i) = \tilde{E}(g_t^n; i^*)$.
- LSM propagates back $v(t, g_t^n; i) = v(t+1, g_{t+1}^n; i^*) + \psi_{t,t+1}(g_t^n, i^*).$
- In LSM the value function is computed *exactly* as long as policy decisions are made *correctly* along the path.

- With storage have inventory C_t which depends on the past control u_s, s ≤ t. Dynamic Programming proceeds backwards.
- Suppose that v(t + 1, gⁿ_{t+1}, c; i) were known for all c. Then can find v(t, gⁿ_t, c, i) as above.
- Interpolate to construct the new $v(t, g, \cdot; i)$ as function of *c*.
- Make a grid in the C-variable.
- If the grid size is N^c, then have N^c optimal switching problems.
 ⇒ Expensive.
- Can no longer propagate back like in LSM.

- Instead do quasi-simulation of C_t.
- If can guess correctly today's action *i* and know inventory tomorrow, then have inventory today and can propagate.
- Perform bivariate regression of path values {v(t, gⁿ_{t+1}, cⁿ_{t+1}; i)} against (gⁿ_t, cⁿ_{t+1}).
- Try to back-out c_t^n such that $\overline{C}_{\Delta t}(c_t^n, \tilde{i}) = c_{t+1}^n$.
- Attempt to do LSM and fall back onto TvR when cannot.
- One large bivariate optimal switching problem: BLSM scheme.

Overall BLSM Algorithm I

- Select a set of bivariate basis functions (\overline{B}_j) and algorithm parameters Δt , $M = T/\Delta t$, N, N_b .
- **2** Generate *N* paths of the price process: $\{g_{m\Delta t}^{n}, m = 0, 1, ..., M, n = 1, 2, ..., N\}$ with fixed $g_{0}^{n} = g_{0}$. Generate a random terminal $c_{T}^{n}(i)$.
- Initialize the pathwise values $v(T, g_T^n, c_T^n(i), i)$.
- Solution Moving backward with $t = m\Delta t$, $m = M, \dots, 0$ repeat:
 - Guess Current C: generate $(c_{m\Delta t}^{n}(i))$ by guessing the optimal decision $\hat{j}^{n}(m\Delta t, i)$ and solving $\bar{C}_{\Delta t}(c_{m\Delta t}^{n}(i), \hat{j}^{n}(m\Delta t, i)) = c_{(m+1)\Delta t}^{n}(\hat{j}^{n}(m\Delta t, i)).$
 - Regression Step: do the bivariate regression to find

$$egin{aligned} & ilde{E}:(g,c,k)\mapsto\sum_{j=1}^{N_b}ar{lpha}_jar{B}_j(g,c;m\Delta t,k)\ &\simeq \mathbb{E}\left[\psi_{m\Delta t}(m\Delta t,g,c)+\mathrm{e}^{-r\Delta t}\cdot v((m+1)\Delta t,G_{(m+1)\Delta t},c,k)ig|G_{m\Delta t}=g
ight] \end{aligned}$$

of the value tomorrow given today's prices and *tomorrow's* inventory.

- Optimal Decision Step: find the optimal decision by evaluating $\tilde{E}(g_{m\Delta t}^n, \bar{C}_{\Delta t}(c_{m\Delta t}^n(i), j))$ above for different *j*'s.
- Update Step: compute v(m∆t, gⁿ_{m∆t}, cⁿ_{m∆t}(i), i) via LSM if correctly guessed jⁿ(m∆t, i) or via (TVR) if not.
- Switching Sets: the points

 $\{(g_{m\Delta t}^n, c_{m\Delta t}^n): n \text{ is such that } \hat{\jmath}^n(m\Delta t, i) = i\}$

define the empirical action set for policy *i*.

- end Loop
- Interpolate $V(0, g_0, c, i)$ from the N values $v(0, g_n^0, c_n^0(i), i)$.

Performance

- Complexity is $\mathcal{O}(M \cdot N \cdot N_b^3)$.
- Quite fast on "toy problems", speed comparable to 1-d pde solvers.
- Much faster than the first Mixed Interpolation TvR attempt.
- No results on convergence rate. Expect algorithm variance of $\mathcal{O}(N^{-1/2})$.
- Variance strongly affected by choice of basis functions (need intuition about the shape of *V*).
- Number of paths N needed is exponential in number of basis functions N_b used.
- Computing resources: 40,000 paths, 15 basis functions, 400 time-steps takes 30 minutes in Matlab on a desktop.
- Within 2% of "true" value (from pde).

Example

٠

Example from de Jong and Walet (2003):

- $d \log G_t = 17.1 \cdot (\log 3 \log G_t) dt + 1.33 dW_t$.
- 8 Bcf capacity: $0 \le C_t \le 8$.

•
$$V(T, g, c, i) = -2 \cdot g \cdot \max(4 - c, 0).$$

$$a_{in} = 0.06 \cdot 365,$$
 $r = 0.06, T = 1$
 $a_{out} = 0.25 \cdot 365,$ $b_i \equiv 0.1, K_{i,j} \equiv 0.25$

• Thus, it takes about 8/0.06 = 133 days to fill the facility and 8/0.25 = 32 days to empty it.

•
$$g_0 = 3, c_0 = 4.$$

Table: Variance of the BLSM scheme as a function of N. Standard deviations were obtained by running the algorithm 50 times.

No. Paths N	Mean	Std. Dev
8000	14.24	4.81
16000	11.03	2.08
24000	10.42	1.48
32000	10.03	0.940
40000	10.01	0.698
pde	9.86	-

function surface showing V(0.5, g, c, 0; T = 1) as a function of current gas price $G_t = g$ and current inventory $C_t = c$.

Optimal Policy Regions

Best Policy showing $i^*(0.5, g, c, 0; T = 1)$ as a function of current gas price $G_t = g$ and current inventory $C_t = c$.

Pricing Energy Storage	Illustrations

Effect of Storage Flexibility on the Value Function. Results obtained using the BLSM algorithm with 40,000 paths.

Daily a _{in}	Daily aout	$V(0, g_0, c_0, 0)$
0.06	0.25	9.86
0.03	0.125	6.41
0.12	0.5	12.96
0.18	0.75	14.63
0.12	0.25	12.95

- Can easily incorporate jumps/seasonality in the model.
- Can add other constraints.
- Use the computed optimal policy in a new simulation to obtain a less biased estimate of *V*.
- Iterate the method to successively improve guesses of optimal policy.
- Can use different bases for different t's, i's.
- Can use other regression tools besides L^2 : kernel, etc.

PDE Methods:

- Extensive Literature
- Known error rate/stability conditions
- Many speed-ups possible
- Guaranteed structure of optimal policy regions

But:

- hard to handle degenerate C-variable
- Changes to price model may require extensive modification
- Impossible to consider multiple factors

Simulation Schemes:

- Very flexible off-the-shelf capability
- Much easier to scale/add constraints
- Can be easily combined with other simulation engines
- Better probabilistic interpretation

Unfortunately:

- No error analysis
- May be unstable must fine-tune basis functions
- No structure of optimal policy regions

The major limitation of pde method is curse of dimensionality:

- It is likely that gas prices are described by a factor model (stochastic mean-reversion level, or regime-switching or pure-jump factors).
- In hydroelectric applications, river run-off and precipitation cause exogenous stochastic fluctuations in inventory levels.
- Power supply guarantees: combine a gas storage problem with the need to serve a client base with stochastic demand.
- Margin constraints: loan for buying commodity to store is marked-to-market and subject to margin calls if prices fall too low.
- A lot remains to be done...

References I

Dixit, A., R. S. Pindvck, 1994.

Investment Under Uncertainty. Princeton University Press.

Geman, H. 2005,

Commodities and commodity derivatives - Modeling and Pricing for Agriculturals, Metals and Energy, Wiley Finance.

Eydeland, A., K. Wolyniec. 2003.

Energy and Power Risk Management: New Developments in Modeling, Pricing and Hedging. John Wiley& Sons, Hoboken, NJ.

Ahn, H., A. Danilova, G. Swindle, 2002.

Storing arb. Wilmott 1.

Barrera-Esteve C., F. Bergeret, C. Dossal, E. Gobet, A. Meziou, R. Munos, D. Reboul-Salze, 2006.

Numerical methods for the pricing of Swing options: a stochastic control approach, Methodology and Computing in Applied Probability, 8, 517-540.

Brennan, M., E. Schwartz, 1985.

Evaluating natural resource investments. J. Business 58 135–157.

Carmona, R., M. Ludkovski, 2005.

Optimal switching with applications to energy tolling agreements. Working paper.

de Jong, C., K. Walet. 2003.

To store or not to store. Tech. rep., Lacima Research Forum, www.eprm.com.

< 同 > の Q (P 32/33

Jacobs, J., G. Freeman, J. Grygier, D. Morton, G. Schults, K. Staschus, J. R. Stedinger, B. Zhang, 1995.

Stochastic optimal coordination of river-basin and thermal electic systems (SOCRATES): A system for scheduling hydroelectric generation under uncertainty. *Annals of Operations Research* **59** 99–133.

Kerr, A. and G. Read. 2005.

Reservoir Management With Risk Aversion, Working paper, citeseer.ist.psu.edu/284527.html

Thompson, M., M. Davison, H. Rasmussen. 2003.

Natural gas storage valuation and optimization: A real options approach. Technical report, University of Western Ontario.

<日 > のへで 33/33