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Energy Storage

Unlike financial “paper” assets, commodities must be physically
stored.

Storage infrastructure is a major component of the energy
industry.

Large-scale needs; very capital intensive.

Storage allows intertemporal transfer.

Financially, storage is a straddle on calendar prices.

Can be used to speculate: commodity prices fluctuate, aim is to
buy low and sell high (and store in between).
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Examples

Natural Gas Storage: salt domes, pipelines, depleted reservoirs,
aquifers.

This is already a multi-billion industry with active trading.

Poised for further growth with rolling-out of Liquified Natural Gas
on world-wide basis.

Hydroelectric Pumped Storage.

The most scalable method of storing electricity; about 75%
efficiency; 38 plants in the US, worldwide capacity of almost 50
GWh.

Resource management. Metal/fossil fuel is “stored” in the
ground, with one-way inventory depletion. Further exploration
permits possibility of “replenishment”.
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Complex Problem:

Commodity prices are stochastic

Strong seasonality effects

Possibility of both forward and spot trades

Engineering constraints/exogenous events

Margin requirements on borrowed funds

Inventory-dependent Injection/withdrawal rates

Storage costs/switching costs
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Model Setup

We focus on the timing optionality within a real-options
framework.

The presence of inventory makes the problem highly
path-dependent!

Concentrate on the gas storage application.

The two key state variables are (Gt) gas prices (stochastic).

(Ct) current inventory of gas (a function of manager’s policy).
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Basic Ingredients

(Gt) is exogenously given and is a d-dimensional Markov
process.

Inventory constraints: cmin ≤ Ct ≤ cMax .

At each instant t , choose an operating regime: ut —rate for
amount of gas to inject/withdraw.

Transmission constraints: amin ≤ ut ≤ aMax .

Resulting inventory path C̄t(u):

dC̄s(u) = aus(C̄s(u)) ds, C̄0(u) = c.

Fixed horizon T : typically the facility is rented from the owner
and must be returned at a later date.

=⇒ Set of admissible policies u ∈ U(c).
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Control Problem

The manager maximizes total revenue on [0,T ].

When operating regime is i , rate of revenue is ψi(t ,Gt ,Ct).

When operating regime is changed from i to j , switching costs
Ki,j(Gt ,Ct) are paid.

Let V (t ,g, c, i) denote maximum expected future profit given the
initial conditions.

Wish to find

V (0,g, c, i) = sup
u∈U

E

∫ T

0
ψu(t)(Gt ,Ct) dt −

∑
t≤T

Kut−,ut

 .
Bellman Principle:

V (0,g, c, i) = sup
u

E

∫ t

0
ψu(s)(Gs,Cs) ds −

∑
s≤t

Kut−,ut + V (t ,Gt , C̄t(u),ut)

 .
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Operating Regimes

Because payoffs are linear in ut , controls are necessarily of
bang-bang type, so the only choices are ut ∈ I , {amin,0,aMax}.
So a priori have a finite-dimensional control space.
=⇒ Three possible operational states

inject dCt = ainj(Ct)dt , ψ−1(Gt ,Ct) = −b−1(Ct)− ainj(Ct) ·Gt

store dCt = 0, ψ0(Gt ,Ct) = −b0(Ct)
withdraw dCt = −awdr (Ct)dt , ψ1(Gt ,Ct) = −b1(Ct) + awdr (Ct) ·Gt

bi ’s are the O&M costs, storage costs, transmission inefficiencies, etc.
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Example

1-d Exponential OU model:

dGt = κ(ḡ − log Gt)Gt dt + σGGt dWt

Mean-reverting, log-normal, non-negative (Jaillet et al. 2004).

Terminal condition reflects stipulations for final inventory:

V (T ,g, c, i) = −2g ·max(c − c,0).

Gas pressure laws:

awdr (c) = k0
√

c, ainj(c) = k1

√
1

c + k2
− 1

k3
.
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Related Literature

Real Options: Brennan and Schwartz (1985), Dixit and Pindyck
(1994), Insley (2003).

Approaches based on pde methods: Ahn et al. (2002), de Jong
and Walet (2003).

Stochastic Programming: Jacobs et al. (1995), Doege et al.
(2006).

Optimal Switching (w/out inventory): Zervos (2003), L. and
Carmona (2005), Barrera-Esteve et al. (2006).
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Solution Approach

The operational flexibility of the manager is a compound timing
option. Under mild assumptions can show that will only make a
finite number of changes in the optimal policy.

⇒ Recursively define V k (t ,g, c, i) for k = 0,1, . . ., 0 ≤ t ≤ T ,
g ∈ Rd , c ∈ [cmin, cmax ] and i ∈ {−1,0,1}:

V 0(t ,g, c, i) , E
[∫ T

t
ψi(s,Gs, C̄s(c, i)) ds

∣∣∣ Gt = g
]
,

V k (t ,g, c, i) , sup
τ∈St

E
[∫ τ

t
e−r(s−t)ψi(s,Gs, C̄s(c, i)) ds

+ max
j 6=i

{
−Ki,j + V k−1(τ,Gτ , C̄τ (c, i), j)

}
e−r(τ−t)

∣∣∣ Gt = g
]
.

Iterative Optimal Stopping Problems.
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Basic Result

Proposition

1 V k is equal to the value function for the storage problem with at
most k regime switches allowed.

2 An optimal finite strategy u∗ = (τ∗1 , ξ
∗
1 , τ

∗
2 , ξ

∗
2 , · · · ) for V k (0,g, c, i)

exists and is: τ∗0 = 0, ξ∗0 = i , and for ` = 1, . . . , k
8>><
>>:

τ∗` , inf
n

s ≥ τ∗`−1 : V `(s,Gs,Cs(u∗), i)

= maxj 6=i
�
−Ki,j + V `−1(s,Gs,Cs(u∗), j)

�o
∧ T ,

ξ∗` , arg maxj 6=i
�
−Ki,j + V `−1(τ∗` −,Gτ∗

`
−,Cτ∗

`
−(u∗), i).

	

3 limk→∞ V k (t ,g, c, i) = V (t ,g, c, i) pointwise, uniformly on
compacts.
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QVI Approach

The classical analytic theory (Øksendal and Sulem, 2005) implies
that the value function is also the (unique viscosity) solution of the
Quasi-Variational Inequality
8>>>><
>>>>:

min
n
− Vt − LGV (t , g, c, i) + ai(c) · ∂cV (t , g, c, i)

− ψi(g, c) + rV (t , g, c, i), V (t , g, c, i)−max
j 6=i

(V (t , g, c, j)− Ki,j)
o

= 0.

V (T , g, c, j) given.
(1)

Assuming a smooth V this can then be implemented with a free
boundary pde solver.
The problem (1) is degenerate (convection-dominated).
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Numerical Algorithm
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Bermudization

Discretize time: decisions are now made only at t = m∆t .
Then to make a decision today compute

V (t ,Gt ,Ct , i) = max
j

�
−Ki,j + E

�
ψt,t+1(Gt ,Ct , j)

+ e−r∆t · V (t + 1,Gt+1, C̄∆t(Ct , j), j)| Ft
��
.

Can apply Dynamic Programming backward in time once can do
the conditional expectation against the Markov state G.
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V(g_1,T, i)

V(g_k, T, i)
Regress { V(g_k, T+1, j)+\psi(g, j) } against {g}

LSM: V(g_k, T, i) := V(g_k, T+1, i^*) + \psi(g; i^*)

TvR: V(g_k, T, i) := f(g, i^*)

Admissible action set is j \in I

Select best action i^*(g; i) using f

−−> f(g; j) is Continuation Value

g

V(g_k, T+1, j)

V(g_1, T+1, j)

T+1

t

T

Get f: g −> E^g[ V(g_k, T+1) + \psi(g,j)]

The

Tsitsiklis-van Roy and Longstaff-Schwartz Pricing Methods for Optimal Switching
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Simulation Methods

Simulate {gn
t }N

n=1 and work with path values v(s,gn
s ).

Given future path values {v(t + 1,gn
t+1; j)} and associated

rewards {ψt,t+1(gn
t ; j)}, regress their sum onto {gn

t } to find out
the continuation value Ẽ(gn

t ; j) for each action j .

Find best action i∗ for each path.

TvR then sets v(t ,gn
t ; i) = Ẽ(gn

t ; i∗).

LSM propagates back
v(t ,gn

t ; i) = v(t + 1,gn
t+1; i∗) + ψt,t+1(gn

t , i
∗).

In LSM the value function is computed exactly as long as policy
decisions are made correctly along the path.
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First Attempt

With storage have inventory Ct which depends on the past
control us, s ≤ t . Dynamic Programming proceeds backwards.

Suppose that v(t + 1,gn
t+1, c; i) were known for all c. Then can

find v(t ,gn
t , c, i) as above.

Interpolate to construct the new v(t ,g, ·; i) as function of c.

Make a grid in the C-variable.

If the grid size is Nc , then have Nc optimal switching problems.
⇒ Expensive.

Can no longer propagate back like in LSM.
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Second Attempt

Instead do quasi-simulation of Ct .

If can guess correctly today’s action ĩ and know inventory
tomorrow, then have inventory today and can propagate.

Perform bivariate regression of path values {v(t ,gn
t+1, c

n
t+1; i)}

against (gn
t , c

n
t+1).

Try to back-out cn
t such that C̄∆t(cn

t , ĩ) = cn
t+1.

Attempt to do LSM and fall back onto TvR when cannot.

One large bivariate optimal switching problem: BLSM scheme.
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Overall BLSM Algorithm I

1 Select a set of bivariate basis functions (B̄j) and algorithm
parameters ∆t ,M = T/∆t ,N,Nb.

2 Generate N paths of the price process: {gn
m∆t , m = 0,1, . . . ,M,

n = 1,2, . . . ,N} with fixed gn
0 = g0. Generate a random terminal

cn
T (i).

3 Initialize the pathwise values v(T ,gn
T , c

n
T (i), i).

4 Moving backward with t = m∆t , m = M, . . . ,0 repeat:
Guess Current C: generate (cn

m∆t(i)) by guessing the optimal
decision ̂n(m∆t , i) and solving
C̄∆t(cn

m∆t(i), ̂
n(m∆t , i)) = cn

(m+1)∆t(̂
n(m∆t , i)).

Regression Step: do the bivariate regression to find

Ẽ : (g, c, k) 7→
NbX
j=1

ᾱj B̄j(g, c; m∆t , k)

' E
h
ψm∆t(m∆t , g, c) + e−r∆t · v((m + 1)∆t ,G(m+1)∆t , c, k)

��Gm∆t = g
i

of the value tomorrow given today’s prices and tomorrow’s
inventory.
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Overall BLSM Algorithm II

Optimal Decision Step: find the optimal decision by evaluating
Ẽ(gn

m∆t , C̄∆t(cn
m∆t(i), j)) above for different j ’s.

Update Step: compute v(m∆t , gn
m∆t , c

n
m∆t(i), i) via (LSM) if

correctly guessed ̂n(m∆t , i) or via (TvR) if not.
Switching Sets: the points

�
(gn

m∆t , c
n
m∆t) : n is such that ̂n(m∆t , i) = i

	

define the empirical action set for policy i .

5 end Loop
6 Interpolate V (0,g0, c, i) from the N values v(0,g0

n , c
0
n(i), i).
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Performance

Complexity is O(M · N · N3
b ).

Quite fast on “toy problems”, speed comparable to 1-d pde
solvers.

Much faster than the first Mixed Interpolation TvR attempt.

No results on convergence rate. Expect algorithm variance of
O(N−1/2).

Variance strongly affected by choice of basis functions (need
intuition about the shape of V ).

Number of paths N needed is exponential in number of basis
functions Nb used.

Computing resources: 40,000 paths, 15 basis functions, 400
time-steps takes 30 minutes in Matlab on a desktop.

Within 2% of “true” value (from pde).
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Example

Example from de Jong and Walet (2003):

d log Gt = 17.1 · (log 3− log Gt) dt + 1.33 dWt .

8 Bcf capacity: 0 ≤ Ct ≤ 8.

V (T ,g, c, i) = −2 · g ·max(4− c,0).

ain = 0.06 · 365, r = 0.06,T = 1
aout = 0.25 · 365, bi ≡ 0.1,Ki,j ≡ 0.25

Thus, it takes about 8/0.06 = 133 days to fill the facility and
8/0.25 = 32 days to empty it.

g0 = 3, c0 = 4.

Pricing Energy Storage Illustrations
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Algorithm Variance

Table: Variance of the BLSM scheme as a function of N. Standard deviations
were obtained by running the algorithm 50 times.

No. Paths N Mean Std. Dev

8000 14.24 4.81
16000 11.03 2.08
24000 10.42 1.48
32000 10.03 0.940
40000 10.01 0.698

pde 9.86 –

Pricing Energy Storage Illustrations
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Value Surface

Value
function surface showing V (0.5, g, c, 0; T = 1) as a function of current gas price Gt = g and

current inventory Ct = c.
Pricing Energy Storage Illustrations
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Optimal Policy Regions

Best Policy showing i∗(0.5, g, c, 0; T = 1) as a function of current gas price Gt = g and current
inventory Ct = c.

Pricing Energy Storage Illustrations



27 / 33

Value of Flexibility

Effect of Storage Flexibility on the Value Function. Results obtained using the BLSM algorithm with
40, 000 paths.

Daily ain Daily aout V (0, g0, c0, 0)

0.06 0.25 9.86
0.03 0.125 6.41
0.12 0.5 12.96
0.18 0.75 14.63
0.12 0.25 12.95

Pricing Energy Storage Illustrations
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Add-Ons

Can easily incorporate jumps/seasonality in the model.

Can add other constraints.

Use the computed optimal policy in a new simulation to obtain a
less biased estimate of V .

Iterate the method to successively improve guesses of optimal
policy.

Can use different bases for different t ’s, i ’s.

Can use other regression tools besides L2: kernel, etc.

Pricing Energy Storage Illustrations
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PDE Methods vs. Simulation Schemes I

PDE Methods:

Extensive Literature

Known error rate/stability conditions

Many speed-ups possible

Guaranteed structure of optimal policy regions

But:

hard to handle degenerate C-variable

Changes to price model may require extensive modification

Impossible to consider multiple factors

Pricing Energy Storage Conclusion: PDE Methods vs. Simulation Schemes
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PDE Methods vs. Simulation Schemes II

Simulation Schemes:

Very flexible off-the-shelf capability

Much easier to scale/add constraints

Can be easily combined with other simulation engines

Better probabilistic interpretation

Unfortunately:

No error analysis

May be unstable – must fine-tune basis functions

No structure of optimal policy regions

Pricing Energy Storage Conclusion: PDE Methods vs. Simulation Schemes



31 / 33

Beyond 1-factor Models

The major limitation of pde method is curse of dimensionality:

It is likely that gas prices are described by a factor model
(stochastic mean-reversion level, or regime-switching or
pure-jump factors).

In hydroelectric applications, river run-off and precipitation cause
exogenous stochastic fluctuations in inventory levels.

Power supply guarantees: combine a gas storage problem with
the need to serve a client base with stochastic demand.

Margin constraints: loan for buying commodity to store is
marked-to-market and subject to margin calls if prices fall too low.

A lot remains to be done...

Pricing Energy Storage Conclusion: PDE Methods vs. Simulation Schemes
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