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Discrete Time Control System

Let us consider a nonlinear control system described in discrete
time by the difference equation{

xt+1 = g(xt, ut), ∀t ∈ N,
x0 given,

where

Thestate variablext belongs to the state spaceX ⊆ RnX .

Thecontrol variableut is an element of the control set
U ⊆ RnU .

Thedynamicsg mapsX× U into X.
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Desirable Configurations

A decision maker describes “desirable configurations of the
system” through a setD ⊂ X× U termed thedesirable set

(xt, ut) ∈ D, ∀t ∈ N,

whereD includes both system states and controls constraints.

Example

Decol := {(x, u) : x > 0} or Decol := {(x, u) : x≥ x̄}
Decon:= {(x, u) : Y(x, u) ≥ ym«ın}
DICES := {(x, u) : SSB(x) ≥ Bref , F(u) ≤ Fref}
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Viability Domains and Viability Kernel

Definition

V ⊂ X is aViability Domainif for all x ∈ V there exists
u ∈ U such that(x, u) ∈ D and g(x, u) ∈ V.

Viability Kernel

V(g, D) = {x0 ∈ X : there exist u0, u1, u2, ..., x1, x2, ...

such that xt+1 = g(xt, ut) and (xt, ut) ∈ D}.

Goals

Determine or approximatethe viability kernelV(g, D)
for a given dynamics g and a given desirable setD.

Determinewhen a given setV is a viability domain.
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Viability Domains and Viability Kernel

Thestate constraints setassociated withD is obtained by
projecting the desirable setD onto the state spaceX:

V0 := ProjX(D) = {x ∈ X | ∃u ∈ U , (x, u) ∈ D}.

By definitionV(g, D) ⊂ V0.

Moreover, the viability kernelV(g, D) turns out to be the union of
all viability domains, that is:

V(g, D) =
⋃{

V : V ⊂ V0, V viability domain forg in D
}

.
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Monotonicity Properties on the Sets

Definition

We say that a setS⊂ X is increasingif it satisfies:

∀x ∈ S, ∀x′ ∈ X , x′ ≥ x⇒ x′ ∈ S.

That isS+ RnX
+ ⊆ S.

We say that a setK ⊂ X× U is increasingif it satisfies:

∀(x, u) ∈ K , ∀x′ ∈ X , x′ ≥ x⇒ (x′, u) ∈ K.

That isK + RnX
+ × {0RnU} ⊂ K.

(state and control do not play the same role)
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Monotonicity Properties on the Dynamics

Definition

We say that the dynamicsg : X× U → X is increasing with
respect to the stateif it satisfies

∀(x, x′, u) ∈ X× X× U , x′ ≥ x⇒ g(x′, u) ≥ g(x, u),

and isdecreasing with respect to the controlif

∀(x, u, u′) ∈ X× U× U , u′ ≥ u⇒ g(x, u′) ≤ g(x, u).
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Bioeconomics Dynamics

Definition

We say thatg : X× U → X is abioeconomics dynamicsif g is
increasing w.r.t the state and decreasing w.r.t. the control.

Definition

We say thatg : X× U → X is abioeconomics quasi-linear
dynamicsif

g(x, u) = G(u)x + H(u),

whereG(u) is anX × nX matrix andH(u) ∈ RnX for all u ∈ U.
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Production and Preservation Desirable sets

Definition

A desirable setD is said to bea production desirable setif
D is increasing w.r.t. both the state and to the control, that is

∀u, u′ ∈ U, x, x′ ∈ X s.t. x′ ≥ x, u′ ≥ u

if (x, u) ∈ D then(x′, u′) ∈ D.

Example

Dyield = {(x, u) | Y(x, u) ≥ ymin},

where Y: X× U −→ R is increasing w.r.t. both variables (state
and control).
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Production and Preservation Desirable Sets

Definition

A desirable setD is said to bea preservation desirable setif
D is increasing w.r.t. the state and decreasing w.r.t. the control:

∀u, u′ ∈ U, x, x′ ∈ X s.t. x′ ≥ x, u′ ≤ u

if (x, u) ∈ D then(x′, u′) ∈ D.

Example

Dprotect = {(x, u) ∈ X× U | D(x, u) ≥ d[},

where D: X× U −→ R is increasing w.r.t. the state but
decreasing w.r.t. the control.
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Viability Kernels Estimates

Assuming they exist, denoteU, i.e.u[ ≤ u≤ u] for all u ∈ U.

For everyt ≥ 0, define recursively the function(g[)t : X −→ X by{
(g[)0(x) := x,

(g[)t+1(x) := g((g[)t(x), u[) , t ∈ N .

Proposition

Suppose that g is a bioeconomics dynamics, and consider the
desirable setsDyield andDprotect. Then we have:

If u] and u[ exist, then
V(g, Dyield) ⊆

⋂
t≥0
{x ∈ X : Y((g[)t(x), u]) ≥ ymin}.

If u[ exists, then
V(g, Dprotect) =

⋂
t≥0
{x ∈ X : D((g[)t(x), u[) ≥ d[}.
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Convexity of Viability Kernel

Proposition

If the dynamics g is bioeconomic quasi-linear and ifD is a
preservation desirable set which isconvex w.r.t. the state, that is

for all u ∈ U, x, x′ ∈ X such that(x, u), (x′, u) ∈ D,

it holds that(αx + (1− α)x′, u) ∈ D for all α ∈ [0, 1].

then the viability kernelV(g, D) is convex.
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Polyhedral Viability Domains

Let g be a bioeconomic quasi-linear dynamics.

Let Dpoly be a preservation desirable set given by

Dpoly = {(x, u) ∈ X× U : D(u)x≥ d[}.

Proposition

Let P̃ be the polyhedron defined by

P̃ = {x ∈ X : (I −G(u[))x≤ H(u[) and D(u[)x≥ d[}.

Then, the set{x≥ x̄} = x̄ + RnX
+ is a viability domain iff̄x ∈ P̃.

Corollary

If x̄ is a desirable equilibrium forDpoly, thenx̄ ∈ P̃ and
consequently{x≥ x̄} is a viability domain (Guilbaud et al.’06).
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Harvested Fish Population Age Structured Model


N1

t+1 = ϕ(SSB(Nt)),

Na
t+1 = e−(M+λFa−1)Na−1

t , a ∈ {2, . . . , A− 1}
NA

t+1 = e−(M+λFA−1)NA−1
t + π × e−(M+λFA)NA

t

Time indext in years.
State variable:N = (Na)a=1,..,A ∈ X = RA

+,
denotes the vector ofabundances (biomass)at agesa.
Control variable:λ ∈ U = R+, fishing effortor exploitation
pattern multiplier.
ϕ describes thestock-recruitment relationship.
Thespanning stock biomassfunction is defined as

SSB(N) =
A∑

a=1

pawaNa.

π = 0 ó 1 indicates ifa = A is aplus-group.
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Harvested Fish Population Age Structured Model

Example

Possibles stock-recruitment relationship:

Constant:ϕ(B) = α.

Linear: ϕ(B) = αB.

Beverton-Holt:ϕ(B) = B
α+βB.

Ricker:ϕ(B) = αBe−βB.
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Harvested Fish Population Age Structured Model

Definition

Thecatchat age a over the period[t − 1, t) is:

Ct,a =
λtFa

λtFa + M

(
1− e−(M+λtFa)

)
Nt,a.

Theyield (in terms of biomass) at time t is:

Yt =
A∑

a=1

wa Ct,a.

Themean fishing mortalityfunction is defined to be:

F(λ) =
λ

Ar − ar + 1

Ar∑
a=ar

Fa.
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Current ICES Advices for Fisheries Management

Indicators and their associated reference points are key
elements of current fisheries management advice of the
International Council for the Exploration of the Sea (ICES):

Keeping spawning stock biomassSSBabove a threshold
reference valueBref .
Restricting mean fishing mortalityF below a threshold
reference valueFref

At the same time, ICES uses this first condition as a policy to
be checked each year.
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Are the ICES recommandations “sustainable”?

{
Nt+1 = g(Nt, λt), t ≥ 0
N0 given

ICES Recommandation: Given a stockN such thatSSB(N) ≥ Bref ,
use the maximal fishing effortλ such that
SSB(f (N, λ)) ≥ Bref andF(λ) ≤ Fref

DICES = {(N, λ) : SSB(N) ≥ Bref , F(λ) ≤ Fref}
VICES = {N : SSB(N) ≥ Bref}

Proposition(Guilbaud et al. 2006)

VICES is not always a viability domain forDICES
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Obtention of Bioeconomics Indicators

If the recruitment functionϕ is increasing, theng is a
bioeconomics dynamics.

Sinceg(N, λ) = G(λ)N +

(
ϕ(SSB(N))

−→
0

)
, if ϕ is constant

or lineal, theng is also quasi-linear.

If D = Dpoly thenV(g, D) is convex.

Proposition(De Lara, Gajardo & Ramírez 2007)

ConsiderDyield = {(N, λ) : Y(N, λ) ≥ ym«ın}, and suppose that
ϕ is increasing andϕ ≤ R. If N belongs to the associated viability
kernel, then SSB(N) ≥ Bref for some reference value Bref > 0.
That is

N ∈ V(g, Dyield) ⇒ SSB(N) ≥ Bref .
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Conclusions and Perspectives

We have presented viability issues in a general framework of
discrete time control system.

Some theoretical properties (such as convexity) and some
estimations or approximations of the viability kernel have
been proved for particular cases.

This has led to new viability indicators in the fishery
management problem.

Perspectives:

We expect to exploit more some properties of the viability
kernel (such as convexity, polyhedral).

We expect to obtain new indicators for viability in the fishery
management problem.

We would like to extend this approach to models with “two
zones” or two interacting species.
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