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Weather Derivatives, 1
Some facts about the influence of the weather in financial
markets:

20-30% of the US economy is directly affected by the
weather.

The fastest growing sector in the Chicago Mercantile
Exchange is that of the CME Weather products.

In general, weather derivatives cover low-risk,
high-probability events. Weather insurance, on the other
hand, typically covers high-risk, low-probability events.

Lately, hedge funds have been adding weather
derivatives to their portfolio, which has helped boost the
overall market.
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Weather Derivatives, 2
Due to the highly localized nature of the weather
phenomena affecting different economic agents, there is a
real need for over-the-counter products, for example:

A Colorado peach farmer concerned about some early
frosts ruining her crop before the harvest at the end of
September. Currently the CME only offers futures and
options on Frost Days for Amsterdam-Schiphol,
Netherlands (WMO 06240).

An insurance company based in Oregon has historical
data that suggests the incidence of claims recorded
during heavy Winter storms is abnormally high, so the
company would like to limit its risk exposure during
these events. Currently the CME only offers Snowfall
options for New York and Boston.
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Weather Derivatives, 3

Insurance and reinsurance firms are finding weather
derivatives an attractive way to transfer risk and lighten their
insurance liabilities.

We will present a scheme that could be followed to price
over-the-counter weather derivatives.
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The risk measure,1

Definition 1 A risk measure ρ : IL∞(Ω,F , P ) → IR is said to
be law invariant if

ρ(X) = ρ(Y )

for any two random variables X and Y which have the same
law .
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The risk measure,2

The benchmark law invariant risk measure is
ρ(X) = AV @Rλ(X) (λ ∈ (0, 1]) which can be expressed as

AV @Rλ(X) = sup
Q∈Qλ

EQ[−X],

where

Qλ =

{
Q << P | dQ

dP
≤ 1

λ

}
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Formulation of the Problem, 1
Our Model:

A Probability space (Ω,F , P )

A single source of risk W : Ω → IR.

A principal who has an initial risk endowment G(W ),
which she evaluates via a coherent risk measure ρ.

A set Θ := [a, 1] of agent types, where θ ∈ Θ is the risk
tolerance coefficient of an agent, which is private
information. We require a > 0.

The distribution of the agents’ types has a density dµ,
which is known by the Principal.
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Formulation of the Problem, 2
The Principal’s aim:

To transfer part of her risk to the agents by trading
derivatives contracts.

We will assume the principal is selling claims of the form

X = f(W ) for a price π(X)

and (X,π(X)) denotes a contract. These are offered in a
take-it-or-leave-it basis. Agents have mean-variance
preferences, namely, an agent of type θ ∈ Θ evaluates
position X via

U(θ,X) = E[X] − θV ar[X].
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The Agents’ Problem, 1
When deciding over contracts of the form (X,π(X)), the
agents face the problem of finding

v(θ) := sup
X∈X

{U(θ,X) − π(X)} = U(θ,X(θ)) − π(X(θ)),

where

X := {X ∈ IL∞(Ω × Θ, P × µ) | X is σ(W ) × B(Θ) measurable} .

Notice that v is a convex function, since it is the supremum
of affine functions (on θ).
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The Agents’ Problem, 2
We say that a set of contracts (or catalogue) is
incentive compatible (IC) if, for any θ, θ′ ∈ Θ,

U(θ,X(θ)) − π(X(θ)) ≥ U(θ,X(θ′)) − π(X(θ′))

and we say the contracts are individually rational (IR) if

U(θ,X(θ)) − π(X(θ)) ≥ 0 for all θ ∈ Θ

where the reservation utility for all agents has been
normalized to 0.
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The Principal’s Problem, 1
For each contract (X,π(X)) issued by the principal, she
receives the amount π(X), and she is subject to the liability
X. The aggregate risky position for the Principal stemming
from the exchanges with the agents is

∫

Θ
(π(X(θ)) − X(θ))dµ(θ).

The Principal’s objective is to devise a pricing schedule π

as to minimize

ρ

(
G(W ) +

∫

Θ

(π(X(θ)) − X(θ))dµ(θ)

)

subject to (X,π) ∈IC∩IR.
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The Principal’s Problem, 2
Lemma 1 The catalogue (X,π) is Incentive Compatible iff v
is proper, convex, non-increasing and −V ar[X(θ)] ∈ ∂v(θ).

Note that

π(X(θ)) = E[X(θ)] − θV ar[X(θ)] − v(θ)

so...
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The Principal’s Problem, 3
Minimizing

ρ

(
G(W ) +

∫

Θ
(π(X(θ)) − X(θ))dµ(θ)

)

over the set of Incentive Compatible and Individually
Rational contracts (X,π) is equivalent to minimizing

ρ

(
G(W ) +

∫

Θ

(E[X(θ)] − θV ar[X(θ)] − v(θ) − X(θ))dµ(θ)

)

over {(v,X) | v ≥ 0, v′′ ≥ 0, v′(θ) = −V ar[X(θ)] a.e.}.
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The Principal’s Problem, 4
Note that X(θ) := E[X(θ)] − X(θ) is a zero-mean process
that satisfies −V ar[X(θ)] = v′(θ), which together with the
fact that ρ is monetary yields

inf
(v,X)∈A

ρ

(
W +

∫

Θ
X(θ)dµ(θ)

)
+

∫

Θ

(
v(θ) − θv′(θ)

)
dµ(θ),

where A is the set

{(v,X) | v ≥ 0, v′′ > 0, E[X(θ)] = 0, −V ar[X(θ)] = v′(θ) a.e.} .

Notation:

I(v) :=

∫

Θ

(
v(θ) − θv′(θ)

)
dµ(θ).
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Existence, 1
Theorem 1 Existence holds for the Principal’s problem.

Outline of the proof
We assume for simplicity that dµ = dθ. Let

〈·, ·〉 :=

∫ ∫

Θ×Ω
XY dθdP.

For a given
v ∈ C∗ := {u : [a, 1] → IR | u is convex, u ≥ 0, u′ ≤ 0}, consider

X v :=
{
X ∈ X | E[X(θ)] = 0, V ar[X(θ)] ≤ −v′(θ) a.e.

}

Notice that if X ∈ X v, then ‖X‖2
2 ≤ v(a).
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Existence, 2
Proposition 1 Let R(X) := ρ

(
G(W ) −

∫
Θ X(θ)dθ

)
, then the

following bounds hold for any pair (X, v) that is acceptable
from the point of view of the principal

−EP [G(W )] + I(v) ≤ R(X) + I(v) ≤ ρ(G(W )).

which in turn implies

v(a) ≤ 1

a
(ρ(G(W )) + EP (G(W )) := K.

It follows from the former expression that X v is a closed,
bounded and convex set, and the convexity of R(X) implies

inf
X∈X v

R(X) = R(Xv) for some Xv ∈ X v.
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Existence, 3
Consider Ỹ ∈ X v, fix θ ∈ Θ and define

Y :=
Ỹ (θ)√

V ar[Ỹ (θ)]

and

α̃(θ) := −Cov[Xv(θ), Y ]±
√

Cov2[Xv(θ), Y ] − v′(θ) − V ar[Xv(θ)],

then
V ar[Xv(θ) + α̃(θ)Y ] = −v′(θ)
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Existence, 4
Proposition 2 α̃ is summable and therefore there is a
θ∗ ∈ (a, 1) such that

∫

Θv∩(a,θ∗

]
α̃(θ)dθ −

∫

Θv∩(θ∗

,1]
α̃(θ)dθ = 0.

Let

α(θ) :=

{
α̃(θ), if θ ≤ θ∗;

−α̃(θ), if θ > θ∗.

Then Zv := Xv + αY ∈ ∂X v = A and R(Xv) = R(Zv).
Therefore Zv satisfies

R(Zv) = inf
X∈A

R(X).
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Existence, 5
The Principal’s problem can be restated as

P = inf
v∈C∗

R(Zv) + I(v)

Lemma 2 Let {uk} ⊂ C∗, then there exists {ujk} ⊂ {uk}
and u ∈ C∗ such that

ujk → u

uniformly on compact subsets of (a, 1].
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Existence, 6
Consider a minimizing sequence {vk} of the Principal’s
problem, i.e.

P = lim
k→∞

R(Zvk
) + I(vk).

It follows from lemma 2 that there exists a subsequence
{vik} that converges uniformly on compact subsets of (a, 1]
to some function v ∈ C∗. Rename this sequence {vn} to
simplify notation. Since vn − θv′n ≥ 0, Fatou’s Lemma
implies that

I(v) ≤ lim inf
n→∞

I(vn).
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Existence, 7
Lemma 3 The function v → R(Zv) is lower semi-continuous
with respect to uniform convergence on compact subsets.
The lemma implies

R(Zv) + I(v) ≤ lim inf
n→∞

R(Zvn
) + I(vn) = P ,

hence the catalogue (Zv, v) solves the Principal’s problem.
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One T-claim, 1
Consider the situation where the principal writes one
T-claim on her risk

f(W ) ≥ 0

and offers contracts of the form

(α(θ)f(W ), π(α(θ)f(W )))

where α(θ) solves

sup
α

U(θ, αf(W )) − π(αf(W )).
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One T-claim, 2
With this simple structure, we can characterize α(θ) in
terms of v′(θ), namely:

α(θ) =

√
−v′(θ)

V ar[f(W )]
.

Therefore, the risky part of the principal’s problem
becomes:

ρ (G(W ) − f(W )C(v)) ,

where

C(v) :=
1

V ar[f(W )]

∫

Θ

√
−v′(θ)dµ(θ).
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One T-claim, 3
Considering the fact that ρ(·) is a decreasing function, the
principal should try to make C(v) as small as possible while
keeping Ĩ(v) (her aggregate payment) as large as possible.
We solved the program

sup
v∈C∗

∫

Θ
−
√
−v′(θ)dµ(θ)

subject to

Ĩ(v) :=

∫

Θ

(
E[f(W )]

V ar[f(W )]

√
−v′(θ) − v(θ) + θv′(θ)

)
dµ(θ) = A
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One T-claim, 4

We found C(v) in terms of A, so the the principal’s problem

reduces to finding the minimum over A ∈
[
0, (EN)2

4MV

]
of

ρ

(
G(W ) − f(W )

N2E

2MV
+ f(W )

N

2M
√

V

√
(NE)2

V
− 4AM

)
−A,
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One T-claim, 5
Once A has been determined (this will depend on the
choice of ρ) the principal will offer

X(θ) =
Γ

2

f(W )

2θ − a

for a price

π(X(θ)) = Γ2

(
1

8

1

2 − a
− 1√

2

θ

(2θ − a)2

)
+

Γ

2θ − a

(
E

2
− Γ

8

)

where

Γ =
1

2M

(
NE√

V
−
√

(NE)2

V
− 4AM

)

– p. 26/30



One T-claim, 6
Assume the Principal is exposed to temperature risk. She
measures this exposure using ρ(X) = AV @R0.05(X), and
she faces the following scenario:

W ∈ [0, 1], where 0 represents the coldest possible
Winter, and 1 the warmest one. The temperature is
assumed to be normally distributed with mean 1/2 and
variance 1/20.

The original exposure of the Principal is given by
0.1(W − 1.1), and ρ(G(W )) = 0.0612.

f(W ) = (W − 0.5)+.
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One T-claim, 7
By proceeding as above the Principal’s risk evaluation
becomes −0.6731, and she offers

X(θ) =
0.5459

2θ − a
f(W )

for a price

π(θ) =
1.1921

8(2 − a)
− (1.1921)θ − (0.22)(2θ − a)√

2(2θ − a)2

NOTE: These figures were estimated using the “Mosek"
optimization toolbox, considering 150 States of the world.
The execution took 198.135 seconds.
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“Upcoming" extensions to the model
Agents with multidimensional types (initial risk
endowments).

Non Mean-Variance agents (although the additive
structure of the agents’ preferences is heavily used
currently).

The problem with multiple principals.
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Thank You!
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