Nonstandard Arithmetic, Reverse Mathematics, and Recursive Comprehension

Lecture at BIRS Dec. 8, 2008
Slides revised Dec. 9, 2008

H. Jerome Keisler
University of Wisconsin, Madison
keisler@math.wisc.edu
www.math.wisc.edu/~keisler
First order reasoning about hyperintegers proves things about sets of integers. The advantage is that hyperintegers have more structure than sets of integers.

1. The languages $L_1, L_2, *L_1$

2. Basic Nonstandard Arithmetic (BNA)

3. The Standard Part Principle (STP)

4. Nonstandard Counterparts

5. Weak Koenig Lemma

6. Arithmetical Comprehension

7. Arithmetical Transfinite Recursion

8. Π^1_1-Comprehension

9. Recursive Comprehension
Reminder: The 5 basic theories in L_2

$$RCA_0 =\ I\Sigma^0_1 + \Sigma^0_1 \text{ Induction} + \Delta^0_1 \text{ Comprehension}.$$

$$WKL_0 = RCA_0 + \text{ the Weak Koenig Lemma}$$
(every infinite binary tree has an infinite branch).

$$ACA_0 = RCA_0 + \text{ Arithmetical Comprehension}$$
(for each k, every Σ^0_k formula defines a set).

$$ATR_0 = RCA_0 + \Sigma^1_1 \text{ Separation}$$
(any two disjoint Σ^1_1 properties are separated by a set).

$$\Pi^1_1$-CA$_0 = RCA_0 + \Pi^1_1 \text{ Comprehension}$$
(any Π^1_1 property defines a set).
Some References

1. The languages $L_1, L_2, *L_1$

First Order Arithmetic L_1:
Sort N with variables m, n, q, r, \ldots
Vocabulary $0, 1, +, -, \cdot, <$
(where $m - n = \max(m - n, 0)$)
Terms $s(\vec{n})$ of sort N

2nd Order Arithmetic L_2:
$L_1 \subseteq L_2$. Models: $(\mathcal{N}, \mathcal{P}), \mathcal{P} \subseteq \mathcal{P}(\mathcal{N})$
Sort P with variables X, Y, Z, \ldots
Relation \in of sort $N \times P$

Nonstandard Arithmetic $*L_1$:
$L_1 \subseteq *L_1$. Models $(\mathcal{N}, *\mathcal{N}), \mathcal{N} \subseteq *\mathcal{N}$
Sort $*N$ with variables x, y, z, \ldots
Vocabulary $0, 1, +, -, \cdot, <$ in both sorts
Terms $t(\vec{u})$ of sort $*N$
where \vec{u} has variables of both sorts.

Combined language: $L_2 \cup *L_1$
Models: $(\mathcal{N}, \mathcal{P}, *\mathcal{N})$
2. Basic Nonstandard Arithmetic (BNA)

A weak theory in $^\ast L_1$
which says $\mathcal{N} \equiv \forall \ast \mathcal{N}$ and $\mathcal{N} \subset_{end} \ast \mathcal{N}$

Axioms of $I\Sigma_1$ in sort N:
Recursive rules for $0, 1, +, -, \cdot, <$,
Σ^0_1 Induction in L_1

\forall-Transfer: $\forall \vec{m} \varphi(\vec{m}) \leftrightarrow \forall \vec{x} \varphi(\vec{x})$,
$\forall \vec{m} \varphi(\vec{m})$ a universal sentence in L_1

Proper Initial Segment Axioms:

\[
\forall n \exists x (x = n)
\]

\[
\forall n \forall x [x < n \rightarrow \exists m x = m]
\]

\[
\exists y \forall n [n < y]
\]
3. The Standard Part Principle (STP)

The bridge between $*L_1$ and L_2.

STP is a sentence in $L_2 \cup *L_1$ meaning:
“Every hyperinteger codes a set, and every set is coded by a hyperinteger”

$(p_n|x)$ means “The n-th prime divides x”,

$st(x) = \varphi(\cdot, \vec{u})$ denotes $\forall m [(p_m|x) \iff \varphi(m, \vec{u})]$
“x codes the class $\{m : \varphi(m, \vec{u})\}$”

$st(x) = X$ denotes $\forall m [(p_m|x) \iff m \in X]$
“x codes X”, “X is the standard part of x”

STP: $\forall x \exists X \ st(x) = X \land \forall X \exists x \ st(x) = X$
4. Nonstandard Counterparts

A theory T' in $L_2 \cup \ast L_1$ is conservative over a theory T in L_2 if every sentence of L_2 provable from T' is provable from T.

T' is a nonstandard counterpart of T if T' implies and is conservative over T.

We will give nonstandard counterparts of each of the five basic theories RCA_0, WKL_0, ACA_0, ATR_0, and Π^1_1-CA_0 of second order arithmetic.

Each of these counterparts will be of the form $U + \text{STP}$ where U is a theory in $\ast L_1$.
5. Weak Koenig Lemma

Theorem. The theory
\[\ast WKL_0 = \text{BNA} + \text{Int-IND} + \Sigma^S_1-\text{IND} + \text{STP} \]
is a nonstandard counterpart of \(WKL_0 \).
So is \(\ast WKL_0 + \) Transfer for FO sentences.

\(\Delta^S_0 \) formula in \(*L_1 \): Built from
atomic formulas, connectives, and
bdd quantifiers \((\forall m < s(\vec{n}))\), \((\forall x < t(\vec{u}))\).
\(\Sigma^S_1 \) means \(\exists m \varphi \) where \(\varphi \) is \(\Delta^S_0 \). And so on.

Internal Induction (Int-IND):
\[[\varphi(0, \vec{u}) \land \forall x [\varphi(x, \vec{u}) \rightarrow \varphi(x + 1, \vec{u})]] \rightarrow \forall x \varphi(x, \vec{u}) \]
where \(\varphi(x, \vec{u}) \) is \(\Delta^S_0 \).

\(\Sigma^S_1 \) Induction (\(\Sigma^S_1 \)-IND):
\[[\psi(0, \vec{u}) \land \forall n [\psi(n, \vec{u}) \rightarrow \psi(n + 1, \vec{u})]] \rightarrow \forall n \psi(n, \vec{u}) \]
where \(\psi(n, \vec{u}) \) is \(\Sigma^S_1 \).

Transfer for FO sentences says \(\mathcal{N} \equiv \ast \mathcal{N} \).

8
5. Weak Koenig Lemma (Continued)

Proof that $^*\text{WKL}_0$ implies WKL_0 uses the **Overspill Lemma**:
For each Δ^S_0 formula $\varphi(x, \vec{u})$,
$$\forall n \varphi(n, \vec{u}) \to \exists x [\varphi(x, \vec{u}) \land \forall m m < x]$$

Proof that $^*\text{WKL}_0$ is conservative over WKL_0 uses Tanaka’s result that
Every countable nonstandard model of WKL_0 has an isomorphic proper end extension.
6. Arithmetical Comprehension

Theorem. *The theory* \({^*}\text{WKL}_0 + S\text{-ACA} \) *is a nonstandard counterpart of ACA}_0. *So is* \({^*}\text{WKL}_0 + S\text{-ACA} + \text{FOT} \).

\(S\)-Arithmetical Comprehension (\(S\text{-ACA} \)):
(Each \(S\)-arithmetical class is coded by an \(x \))

\[
\exists x \text{ st}(x) = \varphi(\cdot, \vec{u})
\]

where \(\varphi(m, \vec{u}) \in \bigcup_k \Sigma^S_k \).

FOT is Transfer for all first order formulas (\(\mathcal{N} \prec {^*}\mathcal{N} \)).

Using results of Enayat, one can get even stronger nonstandard counterparts of ACA}_0.
7. Arithmetical Transfinite Recursion

Theorem. The theory $^{\ast}WKL_0 + \Sigma^*_1$-SEP is a nonstandard counterpart of ATR_0. So is $^{\ast}WKL_0 + \Sigma^*_1$-SEP + FOT.

Σ^*_1 formula: $\exists x \varphi(x, \vec{u})$ where $\varphi(m, \vec{u}) \in \bigcup_k \Sigma^S_k$.

Σ^*_1-Separation (Σ^*_1-SEP):
(Two disjoint Σ^*_1 classes can be separated by an x)

$\forall m[\psi(m, \vec{u}) \rightarrow \neg \theta(m, \vec{u})] \rightarrow$

$\exists x[\psi(\cdot, \vec{u}) \subseteq st(x) \land st(x) \subseteq \neg \theta(\cdot, \vec{u})]$

where $\psi(m, \vec{u}), \theta(m, \vec{u})$ are Σ^*_1.
8. Π_1^1 Comprehension

Theorem. The theory $^*\text{WKL}_0 + \Pi_1^*-\text{CA}$ is a nonstandard counterpart to $\Pi_1^1\text{-CA}_0$. So is $^*\text{WKL}_0 + \Pi_1^*-\text{CA} + \text{FOT}$.

Π_1^* formula: $\forall x \varphi(x, \vec{u})$ where $\varphi(m, \vec{u}) \in \bigcup_k \Sigma^S_k$.

Π_1^* Comprehension ($\Pi_1^*-\text{CA}$):
(Each Π_1^* class is coded by an x)

$$\exists x \, st(x) = \varphi(\cdot, \vec{u})$$

where $\varphi(m, \vec{u})$ is Π_1^*.

The 1984 paper of Henson, Kaufmann, and Keisler gave nonstandard counterparts of some theories which are stronger than $\Pi_1^1\text{-CA}$.
9. Recursive Comprehension

The theory $^\ast\text{RCA}_0 = ^\ast\text{WKL}_0 - \text{STP} + \text{weak STP}$ is a nonstandard counterpart of RCA$_0$. Here is another, with full STP:

Theorem. The theory $^\ast\text{RCA}_0' = \text{BNA} + \text{Special } \Sigma^S_1\text{-IND} + \text{Special } \Delta^S_1\text{-CA} + \text{STP}$ is a nonstandard counterpart of RCA$_0$.

Special Δ^S_0 formulas: Built from atomic formulas, connectives, $(s(\vec{n})|t(\vec{u}))$, bdd quantifiers $(\forall m < s(\vec{n}))$ of sort N. Special Σ^S_1 means $\exists m \varphi$, φ special Δ^S_0.

Special Δ^S_1 Comprehension (Special $\Delta^S_1\text{-CA}$): (Each special Δ^S_1 class is coded by an x)

$$\forall m[\varphi(m, \vec{u}) \leftrightarrow \neg \psi(m, \vec{u})] \rightarrow \exists x \text{ st}(x) = \varphi(\cdot, \vec{u})$$

where $\varphi(m, \vec{u}), \psi(m, \vec{u})$ are special Σ^S_1.

13
9. Recursive Comprehension (Continued)

But each of the following is a nonstandard counterpart of WKL₀:

* \(\text{RCA}_0' + \) Overspill Lemma

* \(\text{RCA}_0' + \) Internal Induction

* \(\text{RCA}_0' + \) Transfer for \(\Pi^0_1 \) sentences

* \(\text{RCA}_0' + \Delta^S_0 \) Comprehension

The analogue of \(\text{RCA}_0' \) with a symbol for each primitive recursive function.
9. Recursive Comprehension (Open Questions)

Is \(\text{BNA} + \Sigma^S_1\text{-IND} + \text{STP} \) conservative over \(\text{RCA}_0 \)?

Is \(^*\text{RCA}_0 ' + \text{Transfer} \) for universal formulas (rather than sentences) conservative over \(\text{RCA}_0 \)?

Note: The above two theories do not imply the Weak Koenig Lemma.

Is the analogue of \(^*\text{RCA}_0 ' \) with an added symbol for exponentiation conservative over \(\text{RCA}_0 \)?

What happens if one uses a different method of coding sets by hyperintegers?