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1 Tim Carlson

Fix a finite set L and an infinite list of variables v0, v1, v2, . . . , vn, . . .. For m,n ≤ ω,
W (L,m, n) is the set of sequences w of elements of L ∪ {vi | i < m} of length n with the
property that vi occurs in w for each i < m and the first occurrence of vi is before the
first occurrence of vj whenever i < j < m. When m ∈ ω, W (L,m) is

⋃
n∈ω W (L,m, n).

W (L) is
⋃

m∈ω W (L,m).

When w ∈ W (L,m, n) and u is a sequence of length m, let w(u) be the result of
simultaneously substituting ui for vi in w for all i < m. Notice that if u ∈ W (k,m) then
w(u) ∈ W (k, n).

The following was the combinatorial core of the main results of [1].

(CCCS) For any coloring of W (L, 0) with finitely many colors there is a w ∈ W (L, ω, ω)
such that the collection of initial parts of w(u) (u ∈ W (L, ω, ω)) is monochromatic.

In the above, the initial part of an element of W (L, ω, ω) is the longest initial segment
in W (L, 0), i.e., the initial segment before the first occurrence of v0.

1



Problem 1.1. Find the proof theoretic strength of CCCS.

CCCS is established in Π1
2 − TI0 in [3].

The following is the combinatorial core of the simplest of the main results from [2].

(CC)1,1 For any coloring of W (L, 1) with finitely many colors there is an infinite sequence
~w of elements of W (L, 1) such that the collection of elements of W (L, 1) of the form

~w0(a0) ∗ ~w1(a1) ∗ · · · ∗ ~wk−1(ak−1)

(where k is the length of ~w and a0, . . . , ak−1 ∈ L ∪ {v0}) is monochromatic.

Problem 1.2. Find the proof theoretic strength of CC1,1.

Since CC1,1 easily implies Hindman’s Theorem as long as L is nonempty, CC1,1

implies ACA0 over RCA0 by a result in [3]. No upper bounds other than those given by
the proof in [2] are known.

A stronger combinatorial result from [2] states that for all m ∈ ω:

(CCm,∞) For any coloring of W (L,m) with finitely many colors, there is an infinite
sequence ~w with ~wk ∈ W (L,m + k) for k ∈ ω such that the collection of all elements of
W (L,m) of the form ~wi0(u0) ∗ ~wi1(u1) ∗ · · · ∗ ~wik(uk) (i0 < i1 < · · · < ik;u0, u1, . . . , uk ∈
W (L)) is monochromatic.

Problem 1.3. Find the proof theoretic strength of CCm,∞.
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2 Chi Tat Chong

Problem 2.1. If M is a model of RCA0+ BΣ2, and A is a ∆2 subset of M (with
parameters from M), is there a solution for A that preserves BΣ2? In other words, is
there a G that is either a subset of A or disjoint from A, such that M [G] is a model
of RCA0 + BΣ2? (M [G] is the model obtained by adjoining G to M and closing under
Turing reducibility.)

Problem 2.2. (In reverse recursion theory) Study the proof-theoretic strength of 0′′′-
priority theorems.

3 Denis Hirschfeldt

Statements:

Definition 3.1. An n-coloring of [N]k, the unordered k-tuples (n1, . . . , nk) of natural
numbers is a map f : [N]k → n. A subset H of N is homogeneous for the coloring f if H
is infinite and |f“[H]k| = 1.

A coloring f of [N]2 is stable if (∀x)(∃y)(∀z > y)[f(x, y) = f(x, z)].

(RT2
2) Ramsey’s Theorem for pairs: Every 2-coloring of [N]2 has a homogeneous set.

(SRT2
2) Stable Ramsey’s Theorem for pairs: Every stable coloring of [N]2 has a

homogeneous set.

Definition 3.2. If ~R = 〈Ri | i ∈ N〉 is a sequence of sets, an infinite set S is ~R-cohesive
if (∀i)(∃s)[(∀j > s)(j ∈ S → j ∈ Ri) ∨ (∀j > s)(j ∈ S → j /∈ Ri)].

(COH) Cohesive Principle: For every sequence ~R = 〈Ri | i ∈ N〉 there is an ~R-
cohesive set.

(CAC) Chain-AntiChain: Every infinite partial order (P,≤P ) has an infinite subset
S that is either a chain, i.e. (∀x, y ∈ S)(x ≤P y ∨ y ≤P x), or an antichain, i.e.
(∀x, y ∈ S)(x 6= y → (x �P y ∧ y �P x)).

(ADS) Ascending or Descending Sequence: Every infinite linear order (L,≤L) has
an infinite subset S that is either an ascending sequence, i.e. (∀s < t)(s, t ∈ S → s <L t),
and so of order type ω, or a descending sequence, i.e. (∀s < t)(s, t ∈ S → t <L s), and
so of order type ω∗.

Definition 3.3. A partial order P is stable if either

((∀i ∈ P )(∃s)[(∀j > s)(j ∈ P → i <P j) ∨ (∀j > s)(j ∈ P → i |P j)]

or
(∀i ∈ P )(∃s)[(∀j > s)(j ∈ P → i >P j) ∨ (∀j > s)(j ∈ P → i |P j)].
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(SCAC) Stable CAC: Every infinite stable partial order has an infinite chain or
antichain.

Definition 3.4. An infinite linear order in which all nonfirst elements have immediate
predecessors and all nonlast ones have immediate successors has type

• ω if every element has finitely many predecessors;.

• ω∗ if every element has finitely many successors;

• ω + ω∗ if it is not of type ω or ω∗ and every element has either finitely many
predecessors or finitely many successors.

(SADS) Stable ADS: Every linear order of type ω+ ω∗ has a subset of order type ω
or ω∗.

(CADS) Cohesive ADS: Every linear order has a subset S of order type ω, ω∗, or
ω + ω∗.

Definition 3.5. An infinite linear order L with first and last elements (0 and 1, respec-
tively) in which all nonfirst elements have immediate predecessors and all nonlast ones
have immediate successors is strongly of type ω+ω∗ if, for every finite ascending sequence
0 = x0 <L x1 <L · · · <L xn = 1, there is exactly one infinite subinterval [xi, xi+1), and
both [x0, xi] and [xi, xn] are finite.

(PART) Every linear order of type ω + ω∗ is strongly of type ω + ω∗.

Questions:

All implications and nonimplications below are over RCA0.

ADS and CAC are both natural principles provable in RT2
2. In the same way that RT2

2

can be split into SRT2
2 and COH (i.e., RT2

2 implies both these principles, and together
they imply RT2

2), ADS can be split into SADS and CADS, and CAC can be split into
SCAC and a cohesive version of CAC that is equivalent to COH (see [2]). As noted in
[2], CAC implies ADS, SCAC implies SADS, and COH implies CADS.

Problem 3.6. Does ADS imply CAC?

Problem 3.7. Does SADS imply SCAC?

Problem 3.8. Does CADS imply COH?

A positive answer to the second question would imply a positive answer to the first
question, since, as shown in [2], ADS implies COH. It was also shown in [2] that CADS
and COH are equivalent over BΣ2.

In [2], it is shown that SADS is not Π1
1-conservative over RCA0 because it implies

PART, which is implied by BΣ2 but not provable in RCA0. These results raise the
following related questions.
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Problem 3.9. Does SADS imply BΣ2?

Problem 3.10. (Now solved [[3]]) Does PART imply BΣ2 over RCA0?

Chong, Lempp, and Yang have now shown that, indeed, PART does imply BΣ2 over
RCA0.

Finally, the following is an important proof theoretic question left open in [1]. See
Section 6 in [2] for a discussion of the potential difficulties in answering it.

Problem 3.11. Is RT2
2 or SRT2

2 Π1
1-conservative over BΣ2?
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4 Jeff Hirst

We introduce the following shorthand notation for combinatorial principles:

Ramsey’s Theorem RTn
k : If f : [N]n → k, then there is an infinite set X ⊂ N and a

c < k such that for all ~x ∈ [X]n, f(~x) = c.

Stable Ramsey’s Theorem SRT2
k: Ramsey’s theorem for pairs and k colors holds for

stable partitions, where f : [N]2 → k is stable if for every m, limn f(m,n) exists.

Ramsey’s Theorem on trees TTn
k : Let 2<N denote the full binary tree and [2<N]n

denote all n-tuples of comparable nodes in 2<N. If f : [2<N]n → k, then we can find
a c < k and a subtree S such that S is order isomorphic to 2<N, and f(σ) = c for
every n-tuple σ of comparable nodes in S.

Increasing polarized Ramsey’s Theorem IPTn
k : If f : [N]n → k, then we can find a

c < k and a sequence H1, H2, . . . Hn of infinite sets such that f({x1, x2, . . . , xn}) = c
for every increasing n-tuple (x1, x2, . . . , xn) ∈ H1 × · · · ×Hn.

We use RTn to abbreviate ∀kRTn
k , and use similar abbreviations for other principles.
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Problem 4.1. Do we need Σ0
2 induction to prove TT1?

Working in RCA0, it is easy to show that TT1 implies RT1. A proof of TT1 from Σ0
2

induction can be found in Chubb, Hirst, and McNicholl [3]. Recently, Corduan, Groszek,
and Mileti [5] have shown that RT1 does not imply TT1.

Problem 4.2. Does ACA0 prove Hindman’s Theorem?

A proof of Hindman’s Theorem in the stronger system ACA+
0 can be found in Blass,

Hirst, and Simpson [1].

Problem 4.3. Can Glazer’s proof of Hindman’s Theorem be adapted to a countable
setting?

Versions of Glazer’s proof can be found in Comfort’s article [4] and Graham, Roth-
schild, and Spencer [7]. Glazer’s proof uses ultrafilters on the full power set of N, but
ultrafilters on countable Boolean algebras suffice for the deduction of Hindman’s Theo-
rem, as shown in Hirst [8].

Problem 4.4. Does RCA0 + TT2
2 ` TT2?

Cholak, Jockusch, and Slaman [2] proved that RCA0 +RT2
2 6` RT2. It may be possible

to provide a negative answer to the problem by emulating their proof.

Problem 4.5. Does RCA0 + TT2
2 ` RT2?

A positive response to the preceding problem yields this result immediately. This
result might be true even if the preceding problem is not. In light of Cholak, Jockusch,
and Slaman’s work [2], a positive result on this problem would show that TT2

2 is strictly
stronger than RT2

2.

Problem 4.6. Does SRT2 imply IPT2?

Many related problems on the strength of the Polarized Ramsey’s Theorem can be
found in Dzhafarov and Hirst [6]. A negative response here would show that SRT2 is
strictly weaker than RT2.

Problem 4.7. Does IPT2 imply RT2?

A negative response here would show that SRT2 is strictly weaker than RT2.
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5 Carl G. Jockusch, Jr.

Background. It follows immediately from Ramsey’s Theorem for pairs that every infi-
nite partial ordering has an infinite chain or an infinite antichain. These problems concern
the complexity of infinite chains and antichains in infinite computable partial orderings.
It follows from effective Ramsey theory (see [3]), that every such partial ordering has an
infinite Π0

2 chain or antichain. On the other hand, Herrmann [5] showed that there is
an infinite computable partial ordering with no infinite Σ0

2 chains or antichains. If only
chains, or only antichains, are considered, the bounds are much higher. It was shown by
Harizanov, Jockusch, and Knight [4] that there is an infinite computable partial order-
ing which has an infinite chain but none which is Σ1

1 or Π1
1, and they also obtained the

analogous result for antichains. In the other direction they showed that every infinite
computable partial ordering which contains an infinite chain has an infinite chain which
is the difference of two Π1

1 sets. They also showed that every infinite computable partial
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Figure 1: Results contributed by: Cholak, Dzhafarov, Hirschfeldt, Hirst, Jockusch, Kjos-
Hanssen, Lempp, Slaman, and Shore The reverse direction of each single headed single
arrow corresponds to an open problem.
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ordering which contains an infinite antichain has an infinite antichain which is truth-table
reducible to Kleene’s O.

Problem 5.1. ([4]) Does every computable partial ordering which contains an infinite
antichain have an infinite antichain which is the difference of two Π1

1 sets?

Background. Stable partial orderings were introduced by Hirschfeldt and Shore in
[6]. In [7], Jockusch, Kastermans, Lempp, Lerman, and Solomon introduced the possibly
more natural notion of a weakly stable partial ordering and extended some of the results
of Hirschfeldt and Shore. Specifically, they called a partial ordering (P,≤) weakly stable
if for all a ∈ P , either a ≤ b holds for almost all b ∈ P , or b ≤ a holds for almost all
b ∈ P , or a is incomparable with almost all b ∈ P (where “almost all” means for all
but finitely many). It was shown in [7] (extending work from [6]) that every infinite
computable weakly stable partial ordering has either an infinite low chain or an infinite
computable antichain.

Problem 5.2. ([7]) Does every infinite computable weakly stable partial ordering have
either an infinite computable chain or an infinite low antichain?

5.1 Open problems from my talk.

Background. Let the combinatorial bounding function f : N → N be defined as follows:
f(n) is the least number b such that every complete rooted ternary tree of depth n with
every edge labeled 0 or 1 has a complete binary subtree of depth n having at most b path
words. (Here a finite rooted tree is “complete” if all of its leaves have the same distance
from the root, and this common distance is the depth of the tree. The path words of a
rooted edge-labeled tree are those obtained by writing in order the labels on the edges
on a path from the root to a leaf.) It is shown in [2] that:

f(i) = i for 1 ≤ i ≤ 4

6 ≤ f(5) ≤ 8

f(n+ 1) ≤ 2f(n) for all n

limn f(n)1/n exists, and this limit L satisfies 1.548 ≤ 21/log23 ≤ L ≤ 2.

Problem 5.3. ([2])

1. What is the value of f(5)?

2. Does there exist n > 1 with f(n+ 1) = 2f(n)?

3. What is the value of the limit L defined above? Does L = 2?

The third problem is by far the most significant of these.
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5.2 Well-known open problems about the strength of Ramsey’s
Theorem for pairs.

Background. Let RTn
k be Ramsey’s Theorem for k-colorings of n-element sets. It was

shown by Simpson [9] that RTn
k follows from ACA0 for each n, k ∈ ω, and that it is

provable in RCA0 that RTn
k implies ACA0 in RCA0 when n ≥ 3, k ≥ 2. It was shown

by Seetapun [8] that RT2
2 does not imply ACA0 in RCA0. Also, it follows easily from

[3] that RT2
2 is not provable in WKL0, so RT2

2 is not equivalent to any of the “big five”
systems of reverse mathematics. The following results appear in [1].

1. (J. Hirst) RT2
2 implies Σ0

2-Bounding in RCA0

2. Every Π1
1 sentence provable from RCA0 + Σ0

2-Induction + RT2
2 is provable from

just RCA0 + Σ0
2-Induction.

3. RT2
2 is equivalent over RCA0 to SRT2

2 + COH . Here a two-coloring of pairs is called
stable if for every a, all but finitely many pairs containing a have the same color, and
SRT2

2 is Ramsey’s Theorem for pairs restricted to stable colorings. COH is a cohesiveness
principle.

Problem 5.4. ([8]) Does RT2
2 imply WKL0 in RCA0 ?

Problem 5.5. ([1]) Does SRT2
2 imply RT2

2 in RCA0 ?

Problem 5.6. ([1]) Does SRT2
2 imply WKL0 in RCA0 ?

Problem 5.7. ([1]) Does RT2
2 imply Σ0

2-Induction in RCA0 ?

Problem 5.8. ([1]) Is RT2
2 Π1

1-conservative (as above) over RCA0 + Σ0
2-bounding?
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6 H. Jerome Keisler

The language ∗L1 of nonstandard arithmetic has sorts N with variables m,n, . . . and ∗N
with variables x, y, . . ., and the vocabulary 0, 1,+, ·−, ·, <. In ∗L1, Basic Nonstandard
Arithmetic (BNA) has the axioms of IΣ1 in sort N , the axioms of linear order in sort
∗N , and the Proper Initial Segment Axioms:

∀n∃x(x = n), ∀n∀x[x < n→ ∃mx = m], ∃y∀n[n < y].

∀-Transfer is the scheme ∀~mϕ(~m) ↔ ∀~xϕ(~x) where ∀~mϕ(~m) is a universal sentence.

L2 is the language of second order arithmetic, with sorts N and P .

In the combined language L2∪ ∗L1, the Standard Part Principle (STP) is the sentence

∀x∃X∀m [(pm|x) ↔ m ∈ X] ∧ ∀X∃x∀m [(pm|x) ↔ m ∈ X].

A ∆S
0 formula in ∗L1 is built from atomic formulas, connectives, and bounded quan-

tifiers of both sorts N and ∗N . ΣS
1 means ∃mϕ where ϕ is ∆S

0 .

Special ∆S
0 formulas are built from atomic formulas, connectives, divisibility formulas

(n|t(~x)), and bounded quantifiers of sort N . Special ΣS
1 means ∃mϕ where ϕ is special

∆S
0 .

ΣS
1 Induction is the scheme

[ψ(0, ~u) ∧ ∀n[ψ(n, ~u) → ψ(n+ 1, ~u)]] → ∀nψ(n, ~u)

where ψ(n, ~u) is ΣS
1 . Special ΣS

1 Induction is the same scheme where ψ(n, ~u) is special
ΣS

1 . Special ΣS
1 Comprehension is the scheme which says that if both ψ(n, ~u) and its

negation are equivalent to special ΣS
1 formulas, then

∃x∀n[ψ(n, ~u) ↔ (pn|x)]
∗RCA0

′ is the theory BNA+Special ΣS
1 Induction + Special ∆S

1 Comprehension +STP.
It implies and is conservative over RCA0. The theory ∗RCA0

′ + ∀-Transfer is still conser-
vative over RCA0. However, many innocent-looking extensions of ∗RCA0

′ imply the weak
König lemma, and thus are not conservative over RCA0.
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Problem 6.1. How much can one add to ∗RCA0
′ + ∀-Transfer and still be conservative

over RCA0?

Problem 6.2. Is ∗RCA0
′ + ∀-Transfer+ΣS

1 Induction conservative over RCA0?

Problem 6.3. Is ∗RCA0
′+Transfer for universal formulas (rather than sentences) con-

servative over RCA0?

Note: The above two theories do not imply the Weak König Lemma.

Problem 6.4. Is the analogue of ∗RCA0
′ with an added symbol for exponentiation con-

servative over RCA0?

Problem 6.5. What happens if one uses a different method of coding sets by hyperin-
tegers?

7 Bjørn Kjos-Hanssen

7.1 Computability: Fixing Notation.

f : N → N or X ∈ {0, 1}∞ is computable if there is an algorithm (implemented on a
Turing machine) that given n produces f(n) (or X(n)).

For X, Y ∈ {0, 1}∞, X is computable from Y if there is an algorithm that given n,
running in finite (but unlimited) time and space and allowed to now and then query bits
among Y (0), . . . , Y (kn), produces X(n).

X ∈ {0, 1}∞ is also considered as X ⊆ N.

Example 7.1. The complement of X is computable from X.

Example 7.2. 0′, the halting problem for Turing machines, is not computable.

7.2 Algorithmic randomness.

For a finite binary string σ ∈ {0, 1}∗, we let

[σ] = {X ∈ {0, 1}∞ : X starts with σ}.

The fair-coin measure on {0, 1}∞ is defined by µ([σ]) = 2−length(σ). Our topology on
{0, 1}∞ is the product topology obtained from the discrete topology on {0, 1}. A Martin-
Löf test is a sequence {Un}n∈N of open subsets of {0, 1}∞ such that µ(Un) ≤ 2−n (equiv-
alently, µ(Un) goes to 0 and not “noncomputably slowly”) and {(σ, n) : [σ] ⊆ Un} is the
range of a computable function from N to {0, 1}∗ × N. The test {Un}n∈N defines a null
set

⋂
n Un. X passes the test for randomness {Un}n∈N if X 6∈

⋂
n Un. X is Martin-Löf

random if it passes all Martin-Löf tests.
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A Martin-Löf test relative to 0′ is defined similarly except that we only require that
{(σ, n) : [σ] ⊆ Un} is the range of a function that is computable from 0′. X is Martin-Löf
random relative to 0′ if it passes all Martin-Löf tests relative to 0′.

Example 7.3. The Strong Law of Large Numbers states that for almost all X according
to the measure µ, we have

∀ε > 0∃N ∀n > N

∣∣∣∣the # of 1’s up to n in X

n
− 1

2

∣∣∣∣ < ε.

Suppose X does not satisfy the SLLN, as witnessed by a number ε0. Let

UN = {Z : ∃n > N

∣∣∣∣the # of 1’s up to n in X

n
− 1

2

∣∣∣∣ ≥ ε0}.

Then UN is open; {(σ, n) : [σ] ⊆ Un} is the range of a computable function; and µ(UN)
goes computably quickly to 0. Thus, X is not Martin-Löf random.

Some basic facts include:

• Almost all X according to µ are Martin-Löf random.

• No computable set X is Martin-Löf random.

• Some Martin-Löf random sets are computable from 0′.

Theorem 7.4 (Law of Weak Subsets [KHb]). Almost every X ⊆ N, according to µ, has
an infinite subset Y ⊆ X such that Y computes no Martin-Löf random set.

(Passing from X to Y we suffer a “loss of randomness beyond algorithmic repair”.)
Equivalently, for almost all X, the Muchnik degree of

{Y : Y is infinite and Y ⊆ X}

is not above R1, the Muchnik degree of Martin-Löf random sets.

This strengthens the result of Kjos-Hanssen [KHa] that there exists a Martin-Löf
random set of integers X and an infinite subset Y such that Y computes no Martin-Löf
random set.

Problem 7.5. How “fat” may the subset Y in Theorem 7.4 be? Can we ensure that it
has positive relative density within X?

Theorem 7.6 (The Law of Weak Subsets is Arithmetical [KHb]). Every X that is
Martin-Löf random relative to 0′ has an infinite subset Y ⊆ X such that Y computes no
Martin-Löf random set.
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The following two examples illustrate how not to try to prove Theorem 7.6.

Example 7.7. Let X be Martin-Löf random and let Y be a “computably chosen” subset
of X. Say,

Y = 〈X(0), 0, X(2), 0, X(4), 0, . . .〉.

Then Y is an infinite subset of X, but Y does compute a Martin-Löf random set, namely,

Z = 〈X(2), X(4), X(6), X(8), . . .〉.

Example 7.8. Let X be Martin-Löf random and let Y be a “randomly chosen” subset
of X. That, is each 1 in X is converted to a 0 with probability 1

2
. Then Y does compute

a Martin-Löf random set, as observed by John von Neumann. Namely, let Z be obtained
from X by making the following replacements:

〈X(2n), X(2n+ 1)〉 7→ Z(n)

〈0, 0〉 7→ 〈〉

〈1, 1〉 7→ 〈〉

〈0, 1〉 7→ 〈0〉

〈1, 0〉 7→ 〈1〉

Problem 7.9. Is there a suitable genericity notion such that for each Martin-Löf random
set X, if Y is a “generic subset” of X then Y computes no Martin-Löf random set?

Definition 7.10. A subset C of N∗ = ω<ω is n-bushy if the empty string is in C and
every element of C has at least n many immediate extensions in C.

Theorem 7.11 ([KHb]). There is a 3-bushy subset C of N∗ such that

1. for each infinite path Z through C, Z does not compute any Martin-Löf random
set; and

2. C is computable from 0′.

Proof. A variation of a construction of Ambos-Spies, Kjos-Hanssen, Lempp, and Slaman
[ASKHLS04]. Now we ask for sets that are so bushy that there is not just one acceptable
path through them, but a whole 3-bushy collection of such paths. Then the construction
splits up into subconstructions for each of these paths. The construction is still carried
out using only the oracle 0′.

(By Arslanov’s completeness criterion, C cannot be computable.)

14



Proof of Theorem 7.6 from Theorem 7.11. Let X be a subset of N∗ that is Martin-Löf
random relative to 0′. A birth-death process where everyone has 3 children, each with a
50% chance of surviving and themselves having 3 children, gives positive probability to
the event of eventual nonextinction of the tribe. Since C is 3-bushy, almost all X have
some finite modification that contains an infinite path through N∗ that is contained in
C. Since C is computable from 0′, the event of extinction is Σ0

1 relative to 0′. We apply
an effective bijection between N∗ and N.

Problem 7.12. Does every Martin-Löf random set X have an infinite subset Y such
that for all Z computable from Y , Z is not Martin-Löf random?

Theorem 7.6 states that this is true if X is Martin-Löf random relative to 0′. One
can also ask Problem 7.12 for Kurtz and Schnorr randomness. If the answer to Problem
7.12 should turn out to be

no, there is a counterexample X that is computable from 0′,

and more generally

for each A, there is an X that is ML-random relative to A and computable
from A′, such that for all infinite subsets Y of X, there is a set Z that is
ML-random relative to A and computable from the join Y ⊕ A,

then

Stable Ramsey’s Theorem for Pairs implies Weak Weak König’s Lemma for
ω-models.

A major problem in Reverse Mathematics:

Problem 7.13. Does Stable Ramsey’s Theorem for Pairs (SRT2
2) imply Weak König’s

Lemma, or at least Weak Weak König’s Lemma?

One can also ask a uniform version of Problem 7.12.

Problem 7.14. Given a Turing reduction Φ, does every Martin-Löf random set X have
an infinite subset Y such that ΦY is not Martin-Löf random?

Carl Jockusch’s talk at the conference, on joint work with Downey, Greenberg, and
Milans [DGJM], inspired this problem, which may have an easy “yes” answer whose proof
is yet to be found.

Another problem about Ramsey theory and WWKL:
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Problem 7.15. Does the conjunction of Gδ-Regularity and Weak Weak König’s Lemma
imply the Rainbow Ramsey Theorem for pairs (over RCA0)?

This is suggested by recent results of Miller [Mil], and would be perhaps the first
example in this part of Reverse Mathematics of mathematical theorems A, B, C such
that

A 6⇒ C

B 6⇒ C

A & B ⇒ C

For those interested in attempting to answer this problem, we mention that the Rain-
bow Ramsey Theorem was studied by Csima and Mileti [CM], and relevant results about
Gδ-Regularity were given by Kjos-Hanssen, Miller, and Solomon [KHMS].
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8 Julia Knight

Ketonen and Solovay [1] defined “α-largeness”, generalizing the largeness from the Paris-
Harrington Theorem [9]. The definition involves fundamental sequences for ordinals.

Definition 8.1 (Fundamental sequences). To each ordinal 0 < α < ε0, we assign a
fundamental sequence {α}(x) as follows.
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1. For α = β + 1, {α}(x) = β, for all x.

2. For α = ωβ+1, {α}(x) = ωβ · x.

3. For α = ωβ, where β is a limit ordinal, {α}(x) = ω{β}(x).

4. For α = ωβ · (a+ 1), where a 6= 1, {α}(x) = ωβ · a+ {ωβ}(x).

5. For α with Cantor normal form ending in ωβ · a, say α = γ + ωβ · a, {α}(x) =
γ + {ωβ · a}(x).

Definition 8.2 (α-largeness). The set X is α-large, for α < ε0, if there is a sequence
C = (α0, x0, α1, x1, . . . , αr−1, xr−1, αr) such that

1. α0 = α,

2. αr = 0,

3. x0 is the first element of X,

4. for 0 < i < r, xi is the first element of X that is > xi−1, and

5. for i < r, αi+1 = {αi}(xi).

Notation: We write β → (α)n
r if for any β-large set X and any partition of the n-sized

subsets of X into r classes, there is an α-large homogeneous set Y ⊆ X.

Theorem 8.3 (Ketonen-Solovay). For each finite n and r and each α < ε0, there exists
β < ε0 such that β → (α)n

r .

Ketonen and Solovay connected this version of Ramsey theory with the Wainer func-
tions [10].

Definition 8.4 (Wainer hierarchy). We define the Wainer hierarchy as Ketonen and
Solovay did.

For α < ε0, Fα(x) is defined as follows.

1. F0(x) = x+ 1,

2. Fα+1(x) = F
(x+1)
α (x),

3. for a limit ordinal α, Fα(x) = max{F{α}(j)(x) : j ≤ x}.

For a model A of I∆0, A is a model of PA iff in A, Fα is total for all α < ε0, and A
is a model of IΣn iff the Fα is total for all α < ωn, where ωn is a tower of n ω’s.

Problem 8.5. How much Ramsey theory is provable in IΣn?

Sommer [2] developed the theory of ordinals in I∆0. Using I∆0 + exp, he developed
the connections between α-largeness and the Wainer functions. However, Sommer did not
do the Ramsey theory. There is further related work by Kotlarski, Bigorajska, Ratajczyk,
Piekart, and Weiermann [3], [4], [5], [6], [7], [8], [11].
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9 Manuel Lerman

A technique frequently used to separate combinatorial principles is to build an ideal of
degrees in which one principle always has a solution, but there is an example of the other
principle in the ideal with no solution in the ideal. Usually, the ideals constructed are ad
hoc. However, there are natural ideals in the arithmetical degrees.

Problem 9.1. Can natural ideals in the arithmetical degrees be used to construct ideals
separating combinatorial principles?

One candidate would be the downward closure of the cappable r.e. degrees.
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10 Alberto Marcone

10.1 The maximal linear extension theorem

Recall that a poset (P,≤P ) is a well-partial-order (wpo) if for every f : N → P there
exists i < j such that f(i) ≤P f(j).

It is well-known that a poset (P,≤P ) is a wpo if and only if all its linear extensions
are well-orders (see [CMS04] for an analysis of the logical strength of the equivalence
between this and other characterizations of wpo). Here a linear extension of (P,≤P ) is a
linear order ≤L which satisfies that x ≤P y implies x ≤L y for all x, y ∈ Q. If the linear
extension is a well-order, its order type is the unique ordinal α isomorphic to it.

Definition 10.1. If (P,≤P ) is a wpo, the maximal order type of (P,≤P ) is

o(P,≤P ) = sup{α |α is the order type of a linear extension of (P,≤P )}.

We often write just o(P ).

We are interested in the reverse mathematics strength of the following theorem, due
to de Jongh and Parikh ([JP77]), which we denote by MLE (for maximal linear extension).

Theorem 10.2. The supremum in the definition of maximal order type is actually a
maximum, i.e., every wpo (P,≤P ) has a linear extension of order type o(P ).

MLE is provable in ATR0. To see this, one can either check that de Jongh and Parikh’s
original proof goes through in ATR0, or use the tree of bad sequences

Bad(P,≤P ) = {s ∈ P<ω | ∀i < j < |s| s(i) �P s(j)}.

Problem 10.3. Does MLE imply ATR0 over RCA0 or some other weak base theory?

Montalbán [Mon07] studied the existence of maximal linear extensions from the
computability-theoretic perspective. He proved that, although every computable wpo
has a computable maximal linear extension, there is no hyperarithmetic way of comput-
ing the index of this maximal linear extension from the index of the wpo. This suggests a
positive answer to Problem 10.3. However, Montalbán’s proof exploits the knowledge of
the order type of the maximal linear extensions of some wpos and has no straightforward
translation in the reverse mathematics setting.

10.2 “3 is a bqo” and its use

We start by giving the definition of a better quasi-order or bqo (for more details see, e.g.,
[Mar05]).

Definition 10.4. A set B ⊆ N<ω is a barrier if
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1. base(B) = {n ∈ N | ∃s ∈ B ∃i < |s| s(i) = n} is infinite;

2. ∀X ∈ base(B)ω ∃s ∈ B (s = X � |s|); and

3. ∀s, t ∈ B(s 6= t =⇒ ∃i < |s| ∀j < |t|s(i) 6= t(j)).

Definition 10.5. Let s, t ∈ N<ω; we write s/t if there exists u ∈ N<ω such that s = u � |s|
and t = ∗u � |t| where ∗u is the sequence gotten from u by deleting its first element..

Definition 10.6. The poset (P,≤P ) is a bqo if for every barrier B and every map
f : B → P , there exist s, t ∈ B such that s / t and f(s) ≤P f(t).

For n ∈ N, let n denote the poset consisting of exactly n pairwise incomparable
elements. Using the clopen Ramsey Theorem, it is easy to show that for every fixed n,
ATR0 proves that n is a bqo.

Theorem 10.7 ([Mar05]). 1. RCA0 proves that 2 is a bqo; and

2. for every n ≥ 3, RCA0 proves that if n is bqo then n + 1 is a bqo.

Thus the following problem is natural:

Problem 10.8. Does “3 is a bqo” imply ATR0 over RCA0 or some other weak base
theory?

Problem 10.8 has a graph-theoretic interpretation. We can view N<ω as the set of
vertices of a graph where s and t are adjacent if s / t or t / s. Then a barrier is identified
with the induced subgraph, and the statement “n is a bqo” amounts to saying that no
barrier is n-colorable. Indeed, the RCA0 proof of “2 is a bqo” consists in showing that
every barrier contains a cycle of odd length. The well-known fact that showing that a
graph is not 3-colorable is much harder than showing that it is not 2-colorable accounts
for the difference between the cases 2 and 3.

A positive answer to Problem 10.8 immediately leads to easy reversals for several
theorems in bqo theory. Consider for example the following theorem, which settled a
long-standing open problem. (Recall that an interval order is a poset not containing a
copy of the partial order with Hasse diagram rr rr; for the reverse mathematics strength
of the equivalence between this and other definitions of interval order, see [Mar07]).

Theorem 10.9 ([PS06]). Every interval order which is a wpo is a bqo.

The proof of Theorem 10.9 can be carried out in ATR0. Notice that RCA0 proves that
3 is both a wpo and an interval order. Therefore, if Problem 10.8 has a positive answer,
the statement of Theorem 10.9 is equivalent to ATR0.
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11 Antonio Montalbán

11.1 Fräıssé’s conjecture

Let FRA be the statement that the countable linear orderings form a well-quasi-ordering
under embeddability. A well-quasi-ordering is a quasi-ordering that has no descending
sequences and no infinite antichains. FRA was conjectured by Fräıssé [Fra48] and later
proved by Laver [Lav71], using Nash-Williams’ notion of a better quasi-ordering [NW68].
The precise reverse mathematics classification of FRA is unknown. Laver’s proof of FRA
can be carried out in Π1

2-CA0, but since FRA is a true Π1
2 statement, it cannot imply even

Π1
1-CA0. Shore [Sho93] proved that the restriction of FRA to countable well-orderings is

equivalent to ATR0, and hence FRA implies ATR0. The following problem remains open.

Problem 11.1. Is FRA equivalent to ATR0?

Clote conjectured in [Clo90] that the answer is affirmative. Marcone and Montalbán
have later done extensive work on this problem [Mar05, Mon07]. They now believe
answering the following problem will lead to a solution. Given an ordinal α, let Lα be
the partial ordering obtained by considering the class of linear orderings of Hausdorff
rank less than α modulo the relation of equimorphism (bi-embeddability), and ordered
by embeddability. It is not hard to show that FRA is equivalent to the statement “for
every ordinal α, Lα is well-founded”.
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Problem 11.2. Given an ordinal α, what is the well-founded-rank of Lα?

Marcone and Montalbán [MM] have shown that the well-founded rank of Lω+1 is εεε... ,
the first fixed point of the epsilon ordinal function, getting results about the strength
of FRA restricted to linear orderings of finite Hausdorff rank. (Marcone and Montalbán
actually calculated the length of the well-partial-ordering Lω, which can be shown to be
the same as the well-founded-rank of Lω+1.)

11.2 Theories of Hyperarithmetic Analysis

We say that a theory T is a theory of hyperarithmetic analysis if all its ω-models are closed
under hyperarithmetic reduction and for every Y ⊆ ω, HY P (Y ) |= T . We say that a
statement S is of hyperarithmetic analysis if RCA0+S is a theory of hyperarithmetic
analysis. Many theories of hyperarithmetic analysis have been studied. Here are the
main examples, from stronger to weaker:

Σ1
1-dependent choices ⇒ Σ1

1-choice ⇒ Π1
1-separation ⇒

∆1
1-CA0 ⇒ Jullien’s Indecomposablity Theorem ⇒

weak-Σ1
1-choice ⇒ The jump iteration statement

So far, only one natural mathematical theorem has been found at this level, namely,
Jullien’s theorem on indecomposable linear orderings [Mon06, Nee]. All the other theories
at this level use concepts from logic. A general problem would be the following.

Problem 11.3. Are there other natural theorems of mathematics, outside logic, which
are statements of hyperarithmetic analysis?

In [Mon06], Montalbán introduced four statements about finitely terminating games
that are also statements of hyperarithmetic analysis. Whether they are natural mathe-
matical theorems is arguable. A finitely terminating gameG(T ) is given by a well-founded
tree T ⊆ ω<ω, where the players take turns playing natural numbers x0, x1, x2...., and the
first one who leaves the tree, i.e., (x0, ..., xn) 6∈ T , loses. Given a countable sequence of
trees {Tn}n∈ω, we consider the game

∑
nG(Tn) where the first player starts by choosing

n ∈ ω, than then they continue playing G(Tn). We say that a game is determined if one
of the players has a winning strategy as usual. We say that a game G(T ) is completely
determined if there is a function that for each node σ ∈ T tells us which player has
a winning strategy if we started playing from σ. Note that from such a function we
could easily build a winning strategy for whichever player has it. Let DG-AC0 be the
statement that says that if {G(Tn)}n∈ω is a sequence of determined finitely terminating
games, then so is

∑
G(Tn). Let CDG-AC0 be the statement that if {G(Tn)}n∈ω is a

sequence of completely determined finitely terminating games, then so is
∑
G(Tn). It is

shown in [Mon06] that

Σ1
1-AC0 → DG-AC0 → ∆1

1-AC0

weak-Σ1
1 − AC0 → CDG-AC0 ⇒ JI,
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where the arrow → means that the reverse is unknown and the arrow ⇒ means that the
reverse is known to be false.

Problem 11.4. Is DG-AC0 equivalent to Σ1
1-AC0?

Problem 11.5. Is CDG-AC0 equivalent to weak-Σ1
1-AC0?
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12 N. W. Sauer

12.1 Age and weak indivisibility

Let R be a relational structure with base set R. The skeleton of R is the set of finite
induced substructures of R. The structure R is homogeneous if every isomorphism
between elements of the skeleton of R has an extension to an automorphism of R. The
age ofR is the class of finite relational structures isomorphic to an element of the skeleton
of R. The subset S of R is age complete if the age of the restriction of R to S is equal
to the age of R. For a general introduction to homogeneous structures see [3].

The structure R is age indivisible if for every partition (A,B) of R at least one of A
and B is age complete. The structure R is weakly indivisible if for every partition (A,B)
of R for which A is not age complete, there is an embedding of R into B. Clearly, age
indivisibility implies weak indivisibility.

Problem 12.1. Let R be homogeneous and R countable and the relational language of
R be finite. Does then age indivisibility imply weak indivisibility?

For a counterexample in the case of infinitely many binary relations see [5]. For other
discussions see [6] and [1].

An age is a class of finite relational structures which is updirected, closed under
induced substructures and under isomorphic images. The age is countable if the set of
isomorphism equivalence classes is countable. An age A is representable if there is a
relational structure R whose age is A.

A theorem of Fräıssé, see [2], says that if A is a countable age then it is representable.
If the age A is not countable, then there need not be a relational structure R whose age
is A. For examples and further discussion see [7].

Problem 12.2. Find a characterization of the uncountable representable ages.
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13 Richard Shore

Reverse Mathematics asks how hard is it to prove the theorems of classical (countable)
mathematics in terms of what set existence axioms are needed to carry out the proof.
The theorems analyzed are typically Π1

2 assertions, for every structure of some sort there
is a function or relation with some desired property, but arbitrary statements can be so
analyzed. Quite often analyses proceed by recursion (computability) theoretic methods.
In the positive direction, one shows that the desired function or relation is computable or
computable from some type of jump operator (Turing, or iterations into the transfinite
all the way to the hyperjump). Such proofs generally provide ones in the analogous
system of Reverse Mathematics (at times with more induction needed than the usual
minimum of Σ0

1). In the other direction, one often demonstrates that one principle or
mathematical assertion Φ does not follow from another Ψ by providing an ideal in the
Turing degrees (i.e., a collection of sets or degrees closed under Turing reducibility and
join and perhaps the jump operator relevant to the discussion) such that Ψ holds in (the
model of second order arithmetic consisting of the sets in) the ideal but Φ does not. This,
of course, proves that Ψ does not imply Φ over RCA0 (or over the system (ACA0, ATR0

or Π1
1-CA0) corresponding to the jump closure condition). It actually provides a stronger

independence result that, for example, applies to the base systems with full induction
and more.

We propose a direct formulation of this computability theoretic measure based on the
difficulty of computing the desired output (function) from the input (as in the typical
case of Π1

2 theorems). Making this view explicit formalizes the intuition of “being harder
to prove” meaning that it is harder to compute the sets that the theorem asserts exist.
It also provides a different expository route into the subject suitable for a mathematical
or computer science audience that intuitively understands computability but may find
formal proof systems foreign or less appealing. More interestingly, for the practitioners
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already familiar with this approach, it provides an opportunity to deal with uncount-
able structures and higher order statements that are out of reach of the standard proof
theoretic methods. The route here is to use one (or more) of the studied definitions of
computability on uncountable structures.

Definition 13.1. If C is a closed class of sets, i.e., closed under Turing reducibility and
join, we say that C computably satisfies Ψ (a sentence of second order arithmetic) if Ψ is
true in the standard model of arithmetic whose second order part consists of the sets with
degrees in C. We say that Ψ computably entails Φ, Ψ �c Φ, if every closed C satisfying
Ψ also satisfies Φ. We say that Ψ and Φ are computably equivalent if each computably
entails the other.

One can now express the equivalence of some Ψ with, e.g., ACA0, ATR0 or Π1
1-CA in

this way. One can also describe entailment or equivalence over one of these systems by
either adding them on to the sentences Ψ and Φ or by requiring that the classes C be closed
under the appropriate operators and reductions (Turing jump, hyperarithmetic in and
hyperjump, respectively). More interestingly, one can directly express the relationships
between two mathematical statements without going through any formal proof systems.

Turning now to uncountable structures, one can simply interpret computability as
some version of generalized computability and then immediately have notions appropri-
ate to uncountable settings. For example, if one is interested in algebraic or combinatorial
structures where the usual mathematical setting assumes that an uncountable structure
is given with its cardinality, i.e., the underlying set for the structure (vector space, field,
graph, etc.) may as well be taken to be a cardinal κ, then a plausible notion of compu-
tation is given by α-recursion theory. In this setting, one carries out basic computations
(including an infinitary sup operation) for α (or, in our situation, κ) many steps, assum-
ing some closure properties such as admissibility on α. (Note that every infinite cardinal
is admissible.)

For settings such as analysis, where the basic underlying set is the reals R or the
complex numbers C, it seems less natural to assume one has a well-ordering of the
structure and one wants a different model of computation. Natural possibilities include
Kleene recursion in higher types, E-recursion (of Normann and Moschovakis) and Blum-
Shub-Smale computability. (See for example [8] or [3] for α-recursion theory; [8], [7] or
[4] for the various versions of recursion in higher types or E-recursion; and [2] for the
Blum-Shub-Smale model.)

Problem 13.2. Develop a computability theoretic type of reverse mathematical analysis
of mathematical theorems on uncountable structures using whichever generalized notion
of computability seems appropriate to the subject being analyzed.

Note that the formulation of the basic yardsticks for this analysis will not, in general
be the same as for the countable case. An obvious example is Weak König’s Lemma. For
uncountable cardinals κ, the assertion that every binary tree of size κ (or even just quite
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simple ones) has a size κ branch is equivalent to κ being weakly compact. Thus such a
principle is not even a candidate yardstick for most cardinals. On the other hand, there
are natural candidates for analogs of ACA0 once one has the right notion for the jump
operator or enough closure to make sense of closing under first order definability (as over
some Lκ). We have worked out [9] a few standard examples in the setting of α-recursion
theory for arbitrary cardinals κ inside L.

Theorem 13.3. The existence of bases for vector spaces of size κ over fields of size κ
is computably equivalent (in the sense of α-recursion theory) to closure under κ-jump
(suitably defined) or under first order comprehension (over Lκ).

For WKL0, the appropriate tree formulation seems to be the following:

Definition 13.4. A binary tree T on a cardinal κ (i.e., a subset of 2<κ closed downward
under initial segments) is of finite character if T is continuous at limit levels, i.e., for any
γ ∈ 2<κ of length a limit ordinal λ, if γ � δ ∈ T for every δ < λ then γ ∈ T and for every
σ ∈ T , if there is a γ > |σ| such that σ has no successors on T at level γ then there is a
τ ⊆ σ of length a successor ordinal such that τ has no successors on T of length γ.

Definition 13.5. The finite character tree property for a cardinal κ, FCTPκ, says that
every binary tree T on κ of finite character has a path of length κ.

Theorem 13.6. The following are computably equivalent in the sense of α-recursion
theory for each cardinal κ:

1. FCTPκ

2. Compactness for first order logic for languages and theories of size κ.

3. Every commutative ring of size κ has a prime ideal.

A natural candidate for the analog of Π1
1-CA0 is, of course, closure under definability

by formulas with a single second order quantifier. We have not yet looked for any
equivalences at this level.

Problem 13.7. What mathematical theorems are computably equivalent (in the sense
of α-recursion theory) to closure under definability over Lκ by formulas with a single
second order quantifier.

It is not clear what the appropriate basic yardsticks corresponding to ATR0 should
be. A candidate for analysis here is König’s Duality Theorem (KDT), which is equivalent
to ATR0 [1],[10]. The arguments of [1] show that it is strictly stronger than closure under
first order definability for every κ.
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Problem 13.8. What is the right standard in α-recursion theory that corresponds to
ATR0, and is it equivalent to KDT for every κ? What about comparability of well-
orderings (of subsets of κ)? (Note that if cf(κ) > ω then being well-founded is a co-κ-r.e.
relation, so the situation for well-orderings is quite different than in the countable case.)

Turning to analysis and related subjects about R, we just note that an old result
of Grilliot [5] can be seen from our point of view as showing that the existence of a
noncontinuous functional is computably equivalent to the existence of 2E. In this setting,
there are also proof theoretic approaches that correspond to Kleene recursion in higher
types as the classical proof theoretic systems do to Turing computability (see [6]).

Problem 13.9. Analyze the classical theorems of analysis in terms of computable en-
tailment and equivalence with computation taken to be Kleene Recursion in higher types
or Blum-Shub-Smale computation.
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14 Stephen G. Simpson

14.1 The Lebesgue Differentiation Theorem

The problem is to determine the computable analysis and/or reverse mathematics status
of the Lebesgue Differentiation Theorem, LDT.

The textbook statement of LDT reads as follows.

Let f be a Lebesgue measurable real-valued function on the d-dimensional
unit cube, [0, 1]d. Then for almost all x ∈ [0, 1]d we have

f(x) = lim
Q→x

∫
Q
fdµ

µ(Q)

where the limit is taken over all d-dimensional cubes Q 3 x as the diameter
tends to 0. Here µ is Lebesgue measure on [0, 1]d.

We say that f is L1-computable if there exists a computable sequence fn, n =
0, 1, 2, . . ., of polynomials with rational coefficients such that ‖f − fn‖1 ≤ 1/2n for all
n. Here ‖f‖1 =

∫
[0,1]d

|f |dµ. My student Noopur Pathak [3] has proved that if x is

Martin-Löf random then LDT holds at x for all L1-computable f . It is open whether
the converse holds. Instead of Martin-Löf randomness, I am now thinking that weaker
notions of randomness may be relevant here, e.g., Schnorr randomness.

Problem 14.1. Let x be a point in [0, 1]d. If LDT holds at x for all L1-computable f ,
does x have to be random in the sense of Martin-Löf?

In reverse mathematics terms, WWKL0 proves LDT, and it is an open question
whether the reversal holds. Here WWKL0 is Weak Weak König’s Lemma, a subsys-
tem of Z2 which is strictly between RCA0 and WKL0 and which has been very useful in
the reverse mathematics of measure theory. See, for instance, [4, 5, §X.1].

Problem 14.2. Is LDT equivalent to WWKL0 over RCA0?

14.2 The Density Theorem for Muchnik Degrees

The problem is to prove or disprove the Muchnik degree analog of the Sacks Density
Theorem.
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Background: If P and Q are sets of reals, P is said to be Muchnik reducible to Q if for
all y ∈ Q there exists x ∈ P such that x ≤T y. The Muchnik degrees are the equivalence
classes of sets of reals under mutual Muchnik reducibility, partially ordered by Muchnik
reducibility. The Muchnik degrees form a complete distributive lattice, denoted Dw.
The study of Dw was originally motivated by intuitionistic considerations going back to
Kolmogorov. We define Pw to be the sublattice of Dw consisting of the Muchnik degrees
of nonempty Π0

1 sets of reals.

Note that Pw is the Muchnik degree analog of the recursively enumerable Turing
degrees. See also [7], where it is shown that the recursively enumerable Turing degrees
are naturally embedded in Pw. However, Pw is much better than the recursively enu-
merable Turing degrees, because Pw contains many specific, natural degrees which are
closely related to foundationally interesting topics. Among these topics are: algorith-
mic randomness, diagonal nonrecursiveness, almost everywhere domination, Kolmogorov
complexity, effective Hausdorff dimension, and hyperarithmeticity. See the references
below.

The Sacks Density Theorem says that given a pair of recursively enumerable Turing
degrees a,b such that a < b, we can find a recursively enumerable Turing degree c such
that a < c < b. The problem that we are posing is to prove or disprove the same
statement with the recursively enumerable Turing degrees replaced by Pw.

Problem 14.3. Prove or disprove the following conjecture. Given a,b ∈ Pw such that
a < b, we can find c ∈ Pw such that a < c < b.
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15 Henry Towsner

Let c be a finite coloring of the integers. Take F to be the collection of finite sets of
integers all of whose finite sums are monochromatic under c, and order F by reverse
inclusion. (That is, s ≺ t iff t ⊆ s.) Hindman’s Theorem is essentially the statement
that F is not well-ordered by ≺. We define the length of c, o(c), to be the order type of
the well-founded part of ≺. This is precisely the order type of the tree of finite partial
witnesses to Hindman’s Theorem which cannot be extended to full witnesses.

Recent results suggest that the order type of c is related to the difficulty of proving
that Hindman’s Theorem holds for c, and in particular that a c which has no arithmetic
solution to Hindman’s Theorem is likely to require at least length ω2. By contrast, the
canonical example that Hindman’s Theorem implies ACA0 over RCA0 has order type at
most ω + ω. We can ask:

Problem 15.1. What is an example of a coloring c with large length?

Problem 15.2. What is the supremum of the order type for recursive/arithmetic/arbitrary
colorings of the integers?

The most interesting examples would have the additional property of being homoge-
neously long, in the sense that the restriction of the coloring to any infinite set is either
monochromatic except on finitely many elements, or is also long.

16 Andreas Weiermann

16.1 Maximal order types for well partial orders

According to de Jongh and Parikh [3] there exists for any well partial order a linear
(and automatically well-ordered) extension on the same set having a maximal possible
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order type. A very general problem is to establish a sort of rule of thumb formula for
calculating the maximal order type of a concretely given well partial order. An even more
general problem is to explain the connection between concrete well orders and concrete
well partial orders in general. To this end we offer several informal principles and it would
be an interesting problem to see how far they would lead. Our first suggestion concerns
a formula (which has been developed in joint research with M. Rathjen) for computing
maximal order types of tree embeddability relations and the long term hope is to give an
analysis of Friedman’s extended Kruskal theorem [11] (of even Kŕıž’s theorem [7]) by it.

To explain this formula informally let us consider a given explicit operator W which
maps a (countable) wpo X to a (countable) wpo W (X) so that the elements of W (X)
can be described as generalized terms in which the variables are replaced by constants for
the elements of X. We assume that the ordering between elements of W (X) is induced
effectively by the ordering from X. (This resembles Feferman’s notion of effective relative
categoricity.) In concrete situations W may for example stand for an iterated application
of basic constructions like disjoint union and Cartesian product, the set of finite sequences
construction, the multiset construction, or a tree constructor and the like. We assume
that for W we have an explicit knowledge of o(W (X)) such that o(W (X)) = o(W (o(X)))
and such that this equality can be proved using an effective reification as in [8].

Using W we then build the set of W -constructor trees T (W (Rec)) (similarly as in
[5]) as follows:

1. · ∈ T (W (Rec)).

2. If (si) is a sequence of elements in T (W (Rec)) and w((xi)) is a term from W (X)
then ·(w((si))) ∈ T (W (Rec)).

The embeddability relation � on T (W (Rec)) is defined recursively as follows:

1. ·� t.

2. If s� ti then s� ·(w((ti))).

3. If w((si)) ≤ w′((tj)) mod W (T (W (Rec))) is induced recursively by � then
·(w((si))) � ·(w′((tj))).

The general principle now is that

T (W (Rec)) is a wpo

(cf. [5]) and
o(〈T (W (Rec)),�〉) ≤ ϑo(W (Ω)) (1)

for o(W (Ω)) ∈ dom(ϑ) with o(W (Ω)) ≥ Ω3. [Moreover the reverse inequality should also
hold in most cases.]
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To understand this formula some additional information on ordinals and in particular
about a so called collapsing function is required (cf., e.g., [13]). Let Ω denote the first
uncountable ordinal and εΩ+1 the first epsilon number above Ω. Then any ordinal α <
εΩ+1 can be described uniquely in terms of its Cantor normal form:

α = Ωα1 · β + · · ·+ Ωαn · βn

where α1 > . . . > αn and 0 < β1, . . . , βn < Ω. In this situation we define the countable
subterms Kα of α recursively via

Kα := Kα1 ∪ . . . ∪Kαn ∪ {β1, . . . , βn}

where K0 := 0. Let AP = {ωδ : δ ∈ ON} be the class of additive principal numbers.
With Kα < β we abbreviate ∀ξ ∈ Kαξ < β. We can then put

ϑα := min{β ∈ AP : β ≥ maxKα ∧ ∀γ < α(Kγ < β → ϑγ < β}. (2)

One easily verifies ϑα < Ω by induction on α using a cardinality argument. It is easy to
verify that then ε0 = ϑΩ and Γ0 = ϑΩ2.

To investigate the maximal order types of Friedman style Kruskal theorems (which
rely on a so called gap condition) one has to extend the domain of ϑ to intrinsically larger
domains but this is rather easy (cf., e.g., [13]). In a first step one defines a function
ϑ1 : εΩ2+1 → [Ω,Ω2[ in the same way as ϑ : εΩ+1 → Ω was defined previously. Here Ω2

denotes the second uncountable cardinal and εΩ2+1 the next epsilon number above Ω2.
On the segment determined by ϑ1εΩ2+1 on can define the countable coefficient sets Kα
similarly as before using Kϑ1α = Kα. Using this one can then define ϑ : ϑ1εΩ2+1 → Ω by
(2). This process can be iterated through the first ω number classes to provide a function
ϑ : ϑ1 . . . ϑnεΩn+1 → Ω giving an end-extension of the previously defined versions of ϑ [13].
The limiting value of ϑϑ1 . . . ϑnεΩn+1 as n→∞ is known to be the ordinal related to the
union of Friedman’s assertions FKTn which rely on an embeddability relation satisfying
a gap condition.

The idea is now to approximate Friedman’s FKTn via the well partial orders

T (. . . (T︸ ︷︷ ︸
n-times

(Rec∗)) . . .) (3)

for which our formula would predict a maximal order type

ϑ(ϑ1(. . . ϑn−1(Ω
ω
n) . . .)). (4)

Here we work with an operator W which is defined by iteration. Let X∗ be the Higman
ordering on the set of finite sequences of elements from a poset X. Then the partial order
in (3) is T (W (Rec)) for the operator W (X) := T (. . . (T︸ ︷︷ ︸

n− 1-times

(X∗)). (We intend to verify

prediction (4) in a joint project with M. Rathjen.)
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Problem 16.1. How far does the general formula (1) lead? Are there natural situations
in which it fails?

Problem 16.2. Assume that W as before is a natural operator mapping (countable)
wpo’s to (countable) wpo’s and assume that o(W (Ω) ≥ Ω3. In what generality does the
following principle hold? Principle: The proof-theoretic ordinal of RCA0+∀X(WPO(X) →
WPO(T (W (X))) is equal to ϑo(W (Ω))?

Problem 16.3. Assume that W as before is a natural operator mapping (countable)
wpo’s to (countable) wpo’s and assume that o(W (Ω) ≥ Ω3. In what generality does the
following principle hold? Principle: RCA0 ` WPO(T (W (Rec))) ↔ WO(ϑ(o(W (Ω))))?

From a more general perspective we believe that a general connection between well
orders and well partial orders might be as follows. Assume that (X,≤) is a recursive
well order represented by a proof-theoretic ordinal notation system. Assume that � is
a restriction of ≤ on X such that x � x′ holds if x ≤ x′ holds (hereditarily) due to a
graph-theoretic reason, like a subterm or monotonicity property. Then the rule of thumb
principle would suggest that (X,�) is a wpo having maximal order type given by the
order type of ≤.

A very interesting test case is provided by Kŕıž’s theorem.

I. Kŕıž proved in [7] the following wqo/wpo result generalizing a result by H. Friedman
[11]: Let Eα be the class of all rooted trees whose edges are labelled by ordinals below a
given ordinal α. Given T in Eα and vertices x and y of T , agree that x ≤ y if and only if
x is on the path between y and the root. Given trees T and S in Eα, agree that S ≤ T
if and only if there is an order- and inf-preserving embedding ϕ of the vertices of S into
the vertices of T satisfying the following “gap-condition”: If x, y is an edge of S and α is
the ordinal labelling x, y, then the labels of all edges on the path in T from ϕ(x) to ϕ(y)
are at least as large as α .

Theorem 16.4 (Kŕıž). If 〈Tn〉∞n=1 is a sequence in Eα then for some n < m one has
Tn ≤ Tm (that is, Eα is well-quasiordered).

Gordeev proved 1993 [4] that the assertion

∀X(WO(X) → WQO(EX)) (5)

is provable in Π1
1 − TR0.

Problem 16.5. How strong is WQO(Eα) for a given fixed (infinite) proof-theoretic or-
dinal α? Is the maximal order type of Eα roughly equal to ϑΩω

α when the domain of ϑ is
suitably extended a la [10]?

Problem 16.6. Do there exist natural wpo assertions which are proof-theoretically
stronger than (5), i.e. Kŕıž’s theorem?
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To obtain WQO/WPO-statements of larger proof-theoretic complexity a natural idea
coming from strong ordinal notation systems would be to replace the ordinal labels by
(previously generated) trees. To make this idea work one first would need a natural
version of Kŕıž’s result where the labels are stemming from a wqo/wpo.

Problem 16.7. Does such a version of (5) exist which in a later generalization would
allow for an insertion of trees for the labels and which still would preserve wqo/wpo’ness.

We expect that this problem is rather difficult. A positive answer will presumably
shed light on the notoriously difficult natural well-ordering problem of Feferman.

16.2 Parameter free comprehension in a weak environment

Let (Π1
1 − CA) denote lightface Π1

1-comprehension. This principle is useful to carry out
minimal bad sequence arguments. In a joint investigation with M. Rathjen we investigate
(Π1

1 − CA) in the context of not too strong theories from reverse mathematics. A par-
ticularly interesting problem concerns Simpson’s theory RCA?

0 [11] which is RCA0 where
Σ0

1 induction is replaced by Σ0
0 induction plus additional axioms expressing the totality

of the exponential function. Moreover let ϕ denote the binary Veblen function [10].

Problem 16.8. Is it true that (Π1
1 − CA)− + RCA∗

0 0 WO(ϕω0)? (We know that (Π1
1 −

CA)− + RCA∗
0 ` WO(α) for all α < ϕω0.) If the answer to this question is no: Is it true

that (Π1
1−CA)−+(∆0

0−CA) 0 WO(ϕω0)? This problem is interesting since, if the answer
would be yes, then (Π1

1−CA)−, which is commonly considered to be the prototype of an
impredicative comprehension, will have a predicative interpretation in a weak context.

16.3 How strong is Voronin universality in reverse mathemat-
ics?

Problem 16.9. How strong is Voronin’s universality theorem about the Riemann ζ-
function with respect to reverse mathematics? How strong are the universality theorems
proved later for variants of the Riemann zeta function (confer, e.g., the corresponding
results proved in [6]).

Voronin’s theorem [12, 6] is as follows: Let 0 < r < 1
4
; let f(s) be a function that is

analytic inside the disc |s| ≤ r and continuous up to the boundary of the disc; if f(s) has
no zeros inside the disc |s| ≤ r, then for every ε > 0 there exists a real number T = T (ε)
such that max|s|≤r|f(s)− ζ(s+ (3

4
+ iT ))| < ε.

This theorem has proven useful in joint work with A. Bovykin on independence results
for arithmetic [2] and the intuition is that Voronin’s result carries reasonable strength.
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16.4 How strong is the Erdös Moser principle in reverse math-
ematics?

A tournament is a complete directed simple graph. Let CAC be the statement that every
infinite partial order has an infinite subchain and let EM be the statement that every
infinite tournament contains an infinite transitive subtournament.(A finitary analogue of
EM has been investigated by Erdös and Moser.) Then RT2

2 proves CAC and EM. But we
also have a reversal: RCA0 + EM + CAC ` RT2

2. The problem (which emerges from joint
work with A. Bovykin [1]) is:

Problem 16.10. How strong is EM in the context of reverse mathematics? Is RCA0+EM
strictly weaker than RCA0 + RT2

2?

(There exists a recursive tournament without an infinite recursive transitive subtour-
nament and so EM is not provable in RCA0 alone.)
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17 Keita Yokoyama

ns-WKL0 is a system of non-standard second order arithmetic which consists of the
following axioms:

1. The standard universe V = (M,S) satisfies WKL0.

2. There exist a non-standard universe V ∗ = (M∗, S∗) and an embedding π : V → V ∗.
Moreover, π is elementary with respect to Σ0

0 formulas and π(M) is an initial
segment of M∗.

3. V and V ∗ are elementary equivalent with respect to Σ1
2 sentences.

4. For any X ∈ S∗, X ∩M is an element of S, i.e., the standard part of X exists.

Note that ns-WKL0 is a conservative extension of WKL0. (For systems of non-
standard second order arithmetic, see [1,2].)

Within ns-WKL0, we can develop a part of non-standard analysis (see [2]). In par-
ticular, we can define the standard part map st : R∗ → R∪ {±∞}. We next consider an
axiom for the transfer principle.

• (Σ0
1-TP) π is elementary with respect to Σ0

1 formulas.

ns-WKL0 + (Σ0
1-TP) proves ACA0, and it is a conservative extension of ACA0.

Within ns-WKL0 + (Σ0
1-TP), we can prove the following non-standard version of the

Bolzano/Weierstrass theorem:
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Theorem 17.1. (nsBWT) : Let f : N → R be a bounded real sequence. Then, for any
w ∈ N∗ \ N, st(π(f)(w)) is an accumulation value of f .

What about the reversal of this theorem?

Problem 17.2. Is (nsBWT) equivalent to (Σ0
1-TP) over ns-WKL0?

Another problem was raised at the meeting:

Problem 17.3. (Now solved) Let (M,S) be a countable model of WWKL0. Can we
then find S̄ ⊇ S such that (M, S̄) is a countable model of WKL0 and every closed set of
positive measure which is coded in S̄ contains points in S?

This result was needed to prove that the formal system for nonstandard analysis
with Loeb measures, ns-BASIC + LMP, is conservative over WWKL0. The problem
was solved (positively) at the meeting by Stephen Simpson. Yokoyama and Simpson are
writing a joint paper which will include this result.
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