Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions and basic properties Conservation Accuracy Monotonicity

Convergent schemes

Stabilization Computationa examples

Conclusions

Non-oscillatory very high order Residual Distribution schemes for steady hyperbolic conservation laws : preliminary results

### **R. Abgrall**<sup>1</sup>, Mario Ricchiuto<sup>1</sup> and A. Larat<sup>1</sup>

<sup>1</sup>INRIA Bordeaux Sud Ouest team Scalapplix and IMB Université de Bordeaux I

Banff, sept 1st 2008

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

### Outline

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

# $\begin{array}{c} \text{Higher order} \\ \mathcal{R}\mathcal{D} \text{ for} \\ \text{steady probs}: \\ \text{preliminary} \\ \text{results} \end{array}$

Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions and basic properties Conservation Accuracy Monotonicity

### Convergent schemes

Stabilization Computational examples

Conclusions

### 1 Generalities

General framework : scalar conservation laws

### 2 Structural conditions and basic properties

Conservation Accuracy Monotonicity

### **3** Convergent schemes

Stabilization Computational examples



#### Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions and basic properties Conservation Accuracy Monotonicity

### Convergent schemes

Stabilization Computationa examples

Conclusions

### Framework for scalar $\mathcal{CL}s$



### Some notation...

- Consider  $\mathcal{T}_h$  triangulation of  $\Omega$  (can do with quads...)
- Unknowns (Degrees of Freedom, DoF) :  $u_i \approx u(M_i)$
- $M_i \in \mathcal{T}_h$  a given set of nodes (vertices +other dofs)
- Denote by  $u_h$  continuous piecewise polynomial interpolation (e.g.  $P^k$  Lagrange triangles) :  $u_h = \sum \psi_i u_i$

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Higher order  $\mathcal{R}\mathcal{D}$  for steady probs : preliminary results

> Abgrall Ricchiuto Larat

General framework · scalar conservation laws

### Residual Distribution $(\mathcal{RD})$ , up to 2nd order

Distribution :

Distribution coeff.s :

 $\phi_i^T = \beta_i^T \phi^T$ 

3 Compute nodal values : solve algebraic system

$$\sum_{T|i\in T} \phi_i^T = \mathbf{0}, \quad \forall \, i \in \mathcal{T}_h$$



Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions and basic properties Conservation Accuracy Monotonicity

### Convergent schemes

Stabilization Computational examples

Conclusions

### Principle for higher order

(3)

1) 
$$\forall T \in \mathcal{T}_h \text{ compute} : \phi^T = \int\limits_T 
abla \cdot \boldsymbol{\mathcal{F}}_h(u_h)$$



2 Distribution :

Distribution coeff.s :  $\phi^T = \sum_{i \in T} \phi^T_i$ 

 $\phi_i^T = \beta_i^T \phi^T$ 

of the second se

3 Compute nodal values : solve algebraic system

$$\sum_{T|i\in T} \phi_i^T = \mathbf{0}, \quad \forall \, i\in \mathcal{T}_h$$



э

(日) (四) (三) (三)

Abgrall Ricchiuto

### Design properties

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

### Larat

General framework : scalar conservation laws

#### Structural conditions and basic properties

Conservation Accuracy Monotonicit

### Convergent schemes

Stabilization Computational examples

Conclusions

### Structural conditions, basic properties

Under which conditions on the  $\phi_i^T$ s we get

- Correct weak solutions (if convergent with h)
- Formal  $k^{\text{th}}$  order of accuracy
- Monotonicity (discrete max priciple)
- Convergence (with *h*, and with *n* !)

#### Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions and basic properties

Conservation Accuracy

Convergent schemes

Stabilization Computationa examples

Conclusions

### Condition 1 : conservation

Lax-Wendroff theorem (Abgrall & Barth, SIAM J.Sci.Comp. 24, 2002 ; Abgrall & Roe, J.Sci.Comp. 19, 2003)

(i)Technical assumptions, e.g. : continuity of  $\phi_i^T$ , consistency of flux approximation  $(\nabla \cdot \boldsymbol{\mathcal{F}}_h = 0 \text{ and } \phi_i^T = 0 \text{ if } u_h = c^t)$ .

(ii) If there is a  $\mathcal{F}_h$ , continuous approximation of  $\mathcal{F}$  such that

$$\phi^{T} = \sum_{j \in T} \phi_{j}^{T} = \int_{T} \nabla \cdot \boldsymbol{\mathcal{F}}_{h} = \oint_{\partial T} \boldsymbol{\mathcal{F}}_{h} \cdot \hat{n}$$
(4)  
then

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶

If a bounded sequence  $u_h$ , solution of scheme (2), converges (with h) to  $u \Longrightarrow u$  is a weak solution of the problem.

Higher order  $\mathcal{RD}$  for steady probs : preliminary results

Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions and basic properties

Conservation

Monotonicity

Convergent schemes

Stabilization Computationa examples

Conclusions

### Condition 1 : conservation

### Remark. Conservation : 2 underlying conditions

1 Existence of continuous flux approximation  $\mathcal{F}_h$  such that  $\phi^T = \int_T \nabla \cdot \mathcal{F}_h = \oint_{\partial T} \mathcal{F}_h \cdot \hat{n}$ for example  $\mathcal{F}_h = \mathcal{F}(u_h)$ , but also  $\mathcal{F}_h = \sum_i \psi_i \mathcal{F}_i$ !!

2 "Consistency" relation

$$\sum_{j \in T} \phi_j^T = \phi^T$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions and basic properties Conservation

Accuracy Monotonicity

Convergent schemes

Stabilization Computationa examples

Conclusions

### Condition 2 : accuracy

Truncation error analysis (Abgrall, *J.Comp.Phys* 167, 2001 ; Ricchiuto *et al.*, *J.Comp.Phys* 222, 2007)

Error estimates built on variational formulation and stability analysis (coercivity) not available.

**1** Given  $w_h$  discrete interpolation of nodal values of smooth exact solution w;

Q Given φ a C<sup>1</sup><sub>0</sub>(Ω) class function, and φ<sub>h</sub> the discrete interpolation of {φ<sub>i</sub>}<sub>i∈T<sub>h</sub></sub>, the nodal values of φ ;

### Truncation error

$$\mathcal{E}(w_h) := \sum_{i \in \mathcal{T}_h} arphi_i \Big( \sum_{T \mid i \in T} \phi_i^T(w_h) \Big)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions and basic properties

Accuracy

Convergent

Stabilization Computational examples

Conclusions

### Condition 2 : accuracy

### Guiding principle

Under which condition the  $\mathcal{RD}$  scheme equivalent to the Galerkin scheme plus terms introducing and error (formally) within the one of the Galerkin approx.



with  $\phi_i^{\text{Gal}}$  elemental contribution of the standard (continuous) Galerkin discretization, and K the number of DoF per element.



#### Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions and basic properties Conservation Accuracy

Monotonicity

### Convergent schemes

Stabilization Computationa examples

Conclusions

### Condition 2 : accuracy

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

### • Final result

If the (continuous) spatial approximations are  $k + 1^{\text{th}}$  order accurate (e.g.  $P^k$  Lagrange approximation), then one has the global estimate

$$|\mathcal{E}(w_h)| \le C'(\mathcal{T}_h, w) \|\nabla \varphi\|_{\infty} h^{k+1}$$

provided that (in 2D)  $\forall i \in T$  and  $\forall T \in \mathcal{T}_h$ 

 $|\phi_i^T(w_h)| \le C''(\mathcal{T}_h, w)h^{k+2} = \mathcal{O}(h^{k+2})$ 

#### Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions and basic properties Conservation Accuracy

Monotonicity

### Convergent schemes

Stabilization Computationa examples

Conclusions

### Condition 2 : accuracy

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

### • Final result

If the (continuous) spatial approximations are  $k + 1^{\text{th}}$  order accurate (e.g.  $P^k$  Lagrange approximation), then one has the global estimate

$$|\mathcal{E}(w_h)| \le C'(\mathcal{T}_h, w) \|\nabla \varphi\|_{\infty} h^{k+1}$$

provided that (in 2D)  $\forall i \in T$  and  $\forall T \in \mathcal{T}_h$ 

 $|\phi_i^T(w_h)| \le C''(\mathcal{T}_h, w)h^{k+2} = \mathcal{O}(h^{k+2})$ 

Higher order  $\mathcal{RD}$  for steady probs : preliminary results

Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions and basic properties Conservation Accuracy

Convergent

schemes

Stabilization Computational examples

Conclusions

### Condition 2 : accuracy

Linearity (Accuracy) preserving schemes The condition  $\phi_i^T(w_h) = \mathcal{O}(h^{k+2})$  gives a design criterion. In particular, one ca show that for a regular solution

$$\phi^{T}(w_{h}) = \int_{T} \nabla \cdot \boldsymbol{\mathcal{F}}_{h}(w_{h}) \stackrel{\nabla \cdot \boldsymbol{\mathcal{F}}(w)=0}{\longleftarrow} \int_{T} \nabla \cdot (F_{h}(w_{h}) - F(w)) = \oint_{\partial T} (\boldsymbol{\mathcal{F}}_{h}(w_{h}) - \boldsymbol{\mathcal{F}}(w)) \cdot \hat{n} = \mathcal{O}(\boldsymbol{\mathcal{F}}_{h}(w_{h}) - \boldsymbol{\mathcal{F}}(w)) \times \mathcal{O}(|\partial T|)$$

$$\stackrel{k+1^{\text{th}} \text{ approx.}}{\longleftarrow} \mathcal{O}(h^{k+1}) \times \mathcal{O}(h) = \mathcal{O}(h^{k+2})$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions and basic properties

Accuracy Monotonicit

Convergent schemes

Stabilization Computationa examples

Conclusions

### Condition 2 : accuracy

Linearity (Accuracy) preserving schemes The condition  $\phi_i^T(w_h) = O(h^{k+2})$  gives a design criterion. In particular, since

$$\phi^T(w_h) = \mathcal{O}(h^{k+2})$$

schemes for which

$$\phi_i^T = \beta_i^T \phi^T$$

with  $\beta_i^T$  uniformly bounded distribution coeff.s, are formally  $k \neq 1^{\text{th}}$  order accurate (for  $k + 1^{\text{th}}$  order spatial interpolation)



SAC

Higher order  $\mathcal{RD}$  for steady probs : preliminary results

#### Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions and basic properties Conservation Accuracy Monotonicity

### Convergent schemes

Stabilization Computational examples

Conclusions

### Condition 3 : monotonicity

### Scalar advection and positivity theory

$$ec{\lambda} \cdot 
abla u = \mathbf{0}, \qquad ec{\lambda} = \mathrm{const}$$

Construct schemes for which

$$\phi_i^T = \sum_{\substack{j \in T \\ j \neq i}} c_{ij} (u_i - u_j), \quad c_{ij} \ge 0$$

Theory of positive coefficient schemes  $\Rightarrow$  discrete max principle (Spekreijse, *Math.Comp.* 49, 1987)

$$u_i^{n+1} = u_i^n - \omega_i \sum_{\substack{T \mid i \in T \\ j \neq i}} \sum_{\substack{j \in T \\ j \neq i}} c_{ij} (u_i^n - u_j^n) \underset{\omega_i \leq \omega_i^{\max}}{\overset{c_{ij} \geq 0}{\Longrightarrow}} \min_j u_j^n \leq u_i^{n+1} \leq \max_j u_j^n$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

#### Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions and basic properties Conservation Accuracy Monotonicity

### Convergent schemes

Stabilization Computational examples

Conclusions

### Examples of positive schemes

Positive schemes : the Rusanov scheme (Local Lax Friedrichs)

Centered linear first order distribution :

$$\phi_i^{\mathsf{Rv}} = \frac{1}{K} \phi^T + \frac{\alpha}{K} \sum_{\substack{j \in T \\ j \neq i}} (u_i - u_j), \ \alpha \ge \max_{j \in T} \left| \int_T \vec{\lambda} \cdot \nabla \psi_j \right|$$

- K number of DoF per element
- $\psi_j$  Lagrange basis fcn. relative to node j
- The Rv scheme is cheap and has general formulation
- The Rv scheme is positive (energy stable in the  $P^1$  case)

Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions and basic properties Conservation Accuracy Monotonicity

#### Convergent schemes

Stabilization Computationa examples

Conclusions

**4** 

### Nonlinear higher order schemes

Generalizations of the PSI of Struijs (Struijs, PhD, Delft U., 1994 ; Deconinck et al., Comp.Mech. 11, 1993)

- **1** Starting point: a positive  $1^{st}$  order scheme  $(\phi_i^p)$
- 2 Devise stretegy to construct a splitting  $(\phi_i^*)$  such that  $\phi_i^* = \alpha_i \phi_i^p$ ,  $\alpha_i \ge 0$  and  $\phi_i^* = \beta_i^* \phi^T$  with  $\beta_i^*$  bounded
- 3 The two conditions lead to the following construction.
  (a) If φ<sup>T</sup> = 0, set φ<sub>i</sub><sup>\*</sup> = 0 ∀i ∈ T
  (b) Otherwise, compute β<sub>i</sub><sup>p</sup> = φ<sub>i</sub><sup>p</sup>/φ<sup>T</sup> ∀i ∈ T and map them onto bounded coefficients verifying

$$eta_i^*eta_i^p\geq 0$$
 (equivalent to  $lpha_i\geq 0$ ) and  $\sum_{j\in T}eta_j^*=1$  Mapping ?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions and basic properties Conservation Accuracy Monotonicity

### Convergent schemes

Stabilization Computationa examples

Conclusions

### Nonlinear higher order schemes

Generalizations of the PSI of Struijs (Struijs, PhD, Delft U., 1994 ; Deconinck et al., Comp.Mech. 11, 1993)

- **1** Starting point: a positive 1<sup>st</sup> order scheme  $(\phi_i^p)$ **2** If  $\phi^T = 0$ , set  $\phi_i^* = 0 \ \forall i \in T$
- $\textbf{3} \mbox{ Otherwise, compute } \beta_i^p = \phi_i^p/\phi^T \ \, \forall i \in T \mbox{ and } map \mbox{ them onto bounded coefficients verifying }$

$$eta_i^*eta_i^p\geq \mathsf{0}$$
 (equivalent to  $lpha_i\geq \mathsf{0}$ ) and  $\sumeta_j^*=1$ 

4 For example take

$$eta_i^* = rac{\mathsf{max}(\mathbf{0},eta_i^p)}{\sum\limits_{j\in T}\mathsf{max}(\mathbf{0},eta_j^p)}$$

 $i \in T$ 

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

#### Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions and basic properties Conservation Accuracy Monotonicity

#### Convergent schemes

Stabilization Computationa examples

Conclusions

### Limited Rv (LRv) scheme

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

#### Summarizing

- $\forall T \in \mathcal{T}_h :$ 
  - (a) Compute  $\phi^T$  (for ex. use  $P^k$  interpolation for flux)
  - (b) Compute Rv distribution  $\phi_i^{\mathsf{Rv}}, \ \forall i \in T$
  - (c) Compute Rv distribution coeff.s and map them  $\Rightarrow \phi_i^{\mathsf{Rv}*} = \beta_i^{\mathsf{Rv}*} \phi^T, \ \forall i \in T$
- 2 Evolve nodal values :  $u_i^{n+1} = u_i^n \omega_i \sum_{T \mid i \in T} \phi_i^{\mathsf{Rv}*}$

Apply the mapping to the Rv scheme  $\Rightarrow$  Limited Rv scheme

Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions and basic properties Conservation Accuracy

Monotonicity

schemes

Stabilization Computational examples

Conclusions



### Numerical example : advection



(日) (圖) (E) (E) (E)

Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions and basic properties Conservation Accuracy Monotonicity u = 1

Convergent schemes

Stabilization Computational examples

Conclusions

### Numerical example : advection



Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions and basic properties Conservation Accuracy Monotonicity

Convergent

Stabilization Computational examples

Conclusions



### Numerical example : rotation



・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

-

Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions an basic properties Conservation Accuracy Monotonicity

Convergent

Stabilization Computational examples

Conclusions



### Numerical example : rotation



・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions and basic properties Conservation Accuracy

Monotonicity

Convergent schemes

Stabilization Computational examples

Conclusions

# u = 1u = 0

### Numerical example : advection



LRv scheme,  $P^1$  interpolation

Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions an basic properties Conservation Accuracy Monotonicity

Convergent

Stabilization Computational examples

Conclusions



### Numerical example : rotation



・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions and basic properties Conservation Accuracy Monotonicity

### Convergent schemes

#### Stabilization Computational

examples

Conclusions

### Upwinding & energy stability issues



### Symptoms

Smooth sol.s Lack of smoothness, staircase structure ; Contacts (linear) : Monotone capturing. Spread over several cells, and then same as smooth parts ;

Shocks (nonlinear) : Monotone capturing. Kept in 1 or 2 cells, no staircases ;

Convergence Lack of iterative convergence (smooth sol.s)  $\Rightarrow$  Poor grid convergence (1<sup>st</sup> order at most)

Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions and basic properties Conservation Accuracy Monotonicity

Convergent schemes

Stabilization

Computationa examples

Conclusions

### Upwinding & energy stability issues



Analysis (Abgrall, J.Comp.Phys. 214, 2006)

Positivity preserving mapping + central schemes : likely to get downwind discretizations, hence lack of stability (and consequently spurious modes, lack of convergence, etc..)

2 Possible cure : add upwind biasing/energy stabilizing term

$$\phi_i^{*S} = \beta_i^* \phi^T + \theta(u_h, \mathcal{T}_h, \vec{\lambda}) h \int_T \vec{\lambda} \cdot \nabla \psi_i \, \vec{\lambda} \cdot \nabla u_h$$

・ロト ・ 雪 ト ・ ヨ ト

with  $\psi_i$  Lagrange basis fcn. of node i

Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions and basic properties Conservation Accuracy Monotonicity

### Convergent schemes

Stabilization

Computational examples

Conclusions

### Upwinding & energy stability issues

$$\phi_i^{*S} = \beta_i^* \phi^T + \theta(u_h, \mathcal{T}_h, \vec{\lambda}) \int_T \vec{\lambda} \cdot \nabla \psi_i \, \vec{\lambda} \cdot \nabla u_h$$
  
Requirements on  $\theta(u_h, \mathcal{T}_h, \vec{\lambda})$ 

() Correct scaling w.r.t.  $\vec{\lambda}$  and mesh size :  $\theta \propto h/\|\vec{\lambda}\|$  ;

**2** Smooth sol.s : provide sufficient dissipation. Exact estimates can be derived asking the final discretization to be coercive. In practice,  $\theta = h/\|\vec{\lambda}\|$  is more than enough ;

# **3** Discontinuous sol.s : since the basic scheme is positive, and no staircase effect is observed in discontinuities, we ask $\theta \propto h^2/\|\vec{\lambda}\|$ on discontinuous sol.s ;

$$\theta(u_h, \mathcal{T}_h, \vec{\lambda}) = \min(1, \frac{\|\vec{\lambda}\|_T \|u_h\|_T h^2}{|\phi^T|}) \frac{1}{\sum\limits_{j \in T} |\vec{\lambda} \cdot \nabla \psi_j|_{P^1}}$$

Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions ar basic properties Conservation Accuracy Monotonicity

#### Convergent

schemes

Stabilization

Computational examples

Conclusions



### Numerical example : rotation



・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions ar basic properties Conservation Accuracy Monotonicity

#### Convergent

schemes

Stabilization

Computational examples

Conclusions



### Numerical example : rotation



・ロト ・ 雪 ト ・ ヨ ト

Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions ar basic properties Conservation Accuracy Monotonicity

#### Convergent

schemes

Stabilization

Computational examples

Conclusions



### Numerical example : rotation



・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions ar basic properties Conservation Accuracy Monotonicity

#### Convergent

schemes

Stabilization

Computational examples

Conclusions



### Numerical example : rotation



・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

#### Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions and basic properties Conservation Accuracy Monotonicity

Convergent schemes

Stabilization

Computational examples

Conclusions

#### $\epsilon_{L^2}(\overline{P^1}$ $\epsilon_{L^2}(P^2$ $\epsilon_{L^2}(P^3$ h 25 0.50493E-02 0.32612E-04 0.12071E-05 0.14684E-02 0.48741E-05 0.90642E-07 /50 0.16245E-07 0.74684E-03 0.13334E-05 1/751/1000.41019E-03 0.66019E-06 0.53860E-08 $\mathcal{O}_{r_2}^{ls} = 3.920$ $\mathcal{O}_{12}^{ls} = 1.790$ $\mathcal{O}_{12}^{ls} = 2.848$

### Grid convergence

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

#### Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions ar basic properties Conservation Accuracy Monotonicity

Convergent schemes

Computational examples

Conclusions

### Rotation of a top hat



Contact in spread on same numer of DoF (fewer cells in  $P^2$  case)

Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions and basic properties Conservation Accuracy Monotonicity

Convergent schemes

Stabilization

Computational examples

Conclusions

# Rotation of a top hat : outlet profile



 $\mathcal{O} \land \mathcal{O}$ 

Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

conditions and basic properties Conservation Accuracy Monotonicity

Convergent schemes

Stabilization

Computational examples

Conclusions

### Numerical example : Burger's eq.n





・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions an basic properties Conservation Accuracy Monotonicity

Convergent schemes

Computational examples

Conclusions

### Numerical example : Burger's eq.n



Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws Structural conditions ar basic

properties

Accuracy Monotonicity

Convergent

Stabilization

Computational examples

Conclusions

### Burger's eq.n : cut at y = 0.0



◆□> ◆□> ◆三> ◆三> ・三 ・ のへ()・

Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws Structural conditions any basic properties Conservation Accuracy

Monotonicity

Convergent schemes

Stabilization

Computational examples

Conclusions

### Burger's eq.n : cut at y = 0.3





Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws Structural conditions and basic properties Conservation Accuracy

Monotonicity Convergent

Stabilization

Computational examples

Conclusions

### Burger's eq.n : cut at y = 0.6



◆□> ◆□> ◆三> ◆三> ・三 ・ のへ()・



Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws Structural conditions and basic properties Conservation Accuracy Monotonicity

Convergent schemes

Stabilization

Computational examples

Conclusions

### Burger's eq.n : cut at y = 0.9



◆□> ◆□> ◆三> ◆三> ・三 ・ のへ()・

Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions and basic properties Conservation Accuracy Monotonicity

Convergent schemes

Stabilization

Computational examples

Conclusions

### Extension to systems

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$$abla \cdot \boldsymbol{\mathcal{F}}(\mathbf{u}) = \mathbf{0}$$

- Schemes formally identical to scalar case
- Nonlinear mapping on scalar residuals obtained by locally projecting on Eigenvector basis
- Stabilization : same as in the scalar case with matrix notation
- Solution monitor θ(u<sub>h</sub>) computed using energy or entropy component of cell residual

Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions and basic properties Conservation Accuracy Monotonicity

#### Convergent schemes

Stabilization

Computational examples

Conclusions

Ma = 0.35 flow on cylinder Mesh : 2719 nodes 5308 elements 100 nodes on cylinder

### Euler eq.s : Ma = 0.35 cylinder flow



Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions an basic properties Conservation Accuracy Monotonicity

Convergent schemes

Stabilization

Computational examples

Conclusions

Ma = 0.35flow on cylinder LRvS scheme  $P^1$  elements :

pressure

### Euler eq.s : Ma = 0.35 cylinder flow



Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions and basic properties Conservation Accuracy Monotonicity

Convergent schemes

Stabilization

Computational examples

Conclusions

Euler eq.s : Ma = 0.35 cylinder flow



Ma = 0.35flow on cylinder LRvS scheme  $P^1$  elements  $P^2$  conformal sub-triangulation : **pressure** 

Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions and basic properties Conservation Accuracy Monotonicity

Convergent schemes

Stabilization

Computational examples

Conclusions

Euler eq.s : Ma = 0.35 cylinder flow



flow on cylinder LRvS scheme  $P^2$  elements : **pressure** (linear boundary representation)

Ma = 0.35

Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions ar basic properties Conservation Accuracy Monotonicity

Convergent schemes

Stabilization

Computational examples

Conclusions

Ma = 0.35flow on cylinder LRvS scheme  $P^1$  elements : entropy

### Euler eq.s : Ma = 0.35 cylinder flow



Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Ma = 0.35flow on cylinder LRvS scheme  $P^1$  elements  $P^2$  conformal sub-triangulation :

entropy

Structural conditions and basic properties Conservation Accuracy Monotonicity

Convergent schemes

Stabilization

Computational examples

Conclusions

### Euler eq.s : Ma = 0.35 cylinder flow



Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Ma = 0.35 flow on cylinder

LRvS scheme  $P^2$  elements :

representation)

entropy (linear boundary

Structural conditions an basic properties Conservation Accuracy Monotonicity

Convergent schemes

Stabilization

Computational examples

Conclusions

Euler eq.s : Ma = 0.35 cylinder flow



(日)

э

Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions ar basic properties Conservation Accuracy Monotonicity

Convergent schemes

Stabilization

Computational examples

Conclusions

### Ma = 0.35flow on cylinder LRvS scheme : entropy on the cylinder

# Ma = 0.35 cylinder flow : entropy distribution



Higher order  $\mathcal{RD}$  for steady probs : preliminary results

#### Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions and basic properties Conservation Accuracy Monotonicity

Convergent schemes

Stabilization

Computational examples

Conclusions

### Euler eq.s : self-similar sol.s

Consider families of self-similar unsteady solutions of the type

$$\mathbf{u}(t, x, y) = \mathbf{u}(\eta, \xi)$$
 with  $\eta = \frac{x}{t}, \ \xi = \frac{x}{t}$ 

The time dependent problem can be easily recast as :

$$\mathbf{u}_t + 
abla \cdot oldsymbol{\mathcal{F}}(\mathbf{u}) = -\eta \mathbf{u}_\eta - \xi \mathbf{u}_\xi + 
abla_{\eta\xi} \cdot oldsymbol{\mathcal{F}}(\mathbf{u})$$

For a fixed final time  $t = t^*$ , we solve the steady problem

$$-x\mathbf{u}_x - y\mathbf{u}_y + \nabla \cdot \boldsymbol{\mathcal{F}}(\mathbf{u}) = \mathbf{0}$$

Extra terms included both in the element residual and in the stabilization term  $t = t^* \Longrightarrow$  linear scaling of computational domain

Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions and basic properties Conservation Accuracy Monotonicity

Convergent schemes

Stabilization Computational

examples

Conclusions

### Euler eq.s : 2D RP

From (Kurganov & Tadmor, *Num.Meth. for Part.Diff.Eq.* 18, 2002) 2D Riemann Problem, configuration 12



Density contours LRvS scheme,  $P^2$  elements  $\rightarrow$   $\Rightarrow$   $\Rightarrow$   $\Rightarrow$   $\Rightarrow$ 

Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions at basic properties Conservation Accuracy Monotonicity

Convergent schemes

Stabilization

Computational examples

Conclusions

### Euler eq.s : 2D RP

From (Kurganov & Tadmor, *Num.Meth. for Part.Diff.Eq.* 18, 2002) 2D Riemann Problem, configuration 12



Density contours LRvS scheme,  $P^2$  elements  $\rightarrow$  (2)  $\rightarrow$  (2)  $\rightarrow$  (2)





Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions and basic properties Conservation Accuracy Monotonicity

Convergent schemes

Stabilization

Computational examples

Conclusions

### NACA 0012, M=0.85, $2^{\circ}$ pressure





Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions and basic properties Conservation Accuracy Monotonicity

Convergent schemes

Stabilization

Computational examples

Conclusions





### Entropy deviation





#### Abgrall Ricchiuto Larat

#### Generalities

framework : scalar conservation laws Structural conditions and basic properties Conservation Accuracy Manatonicity

Convergent schemes

Stabilization

Computational examples

Conclusions

#### Naca012, 1degree, M=0.85 Entropy variation 0.06 LxFO2 all dof --- LxFO2 coarse mesh 0.05 •--• LxFO3 0.04 0.03 0.02 0.01 0 0.2 0.4 0.6 0.8 0

entropy deviation

20

Abgrall Ricchiuto Larat

#### Generalities

General framework : scalar conservation laws

Structural conditions and basic properties Conservation Accuracy Monotonicity

### Convergent schemes

Stabilization Computational examples

Conclusions

### Conclusions and perspectives

### Conclusions

- Convergent higher order non-oscillatory  $\mathcal{R}\mathcal{D}$  schemes
- General procedure
- Efficient discretizations (fewer DoF and op.s w.r.t. DG)
- For systems less matrix algebra than with upwind schemes

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

### Problems and perspectives

- Time-dependent
- Actual comparison with DG (error vs CPU)
- Viscous terms (in progress)