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1. Introduction
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5Elementary interactions

➠ Difficult to access from experiments

➟ complex (e.g. not a sum of pair interactions)

➟ mostly unknown

➠ Classical micro-macro approach is bottom-up

➟ From the knowledge of elementary interactions

➟ build macro models for large systems

➠ Complex systems require top-down approach

➟ From macro models build macro observables

➟ and test hypotheses about micro interactions

➟ use model and data together to extract information
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6Importance of micro-macro passage

➠ Link micro interactions to macro model

➟ in a (formally) rigorous way

➠ Macro models are more efficient for large systems

➟ particle models scale polynomially with # of particles

➠ Morphogenesis easier with macro models

➟ Phase transitions can be encoded more easily

➠ This talk: micro-macro passage for two models

➟ Vicsek (alignement interaction)

➟ Persistent Turning Walker
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2. From particles to mean-field model



(Summary) (Conclusion)Pierre Degond - Fluid models for complex systems - Banff, Sept. 2008

8Couzin-Vicsek model

➠ Alignement interaction (’moving spins’)

➟ Discrete model

➟ Xn
k : position of k-th individual at time tn = n∆t

➟ ωn
k : velocity with |ωn

k | = 1
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8Couzin-Vicsek model

➠ Alignement interaction (’moving spins’)

➟ Discrete model

➟ Xn
k : position of k-th individual at time tn = n∆t

➟ ωn
k : velocity with |ωn

k | = 1

➠ During each ∆t:

➟ Particle moves a distance ωn
k ∆t

➟ ωn
k changed to ωn+1

k

= direction ω̄n
k of average neighbours’ velocity

+ noise

➟ Noise accounts for inaccuracy of the perceptive system
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9Couzin-Vicsek algorithm

➠ [Vicsek et al, PRL 95]:

Xn+1
k = Xn

k + ωn
k ∆t

ωn+1
k = ω̄n

k + noise

ω̄n
k =

Jn
k

|Jn
k |

, Jn
k =

∑

j, |Xn
j −Xn

k |≤R

ωn
j

noise = uniform for angle in interval [−σ, σ] in 2D
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10Phase transition

➠ Model shows 2 regimes [Vicsek et al, PRL 95]

➟ Disorganized / Aligned

➟ Phase transition to disorder
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11Time scale separation

➠ Two time scales are collapsed

➟ Discretization step ∆t and Mean interaction time τ

➠ After separating theses two time scales:

ωn+1
k − ωn

k

∆t
=

1

τ
(Id − ω

n+1/2
k ⊗ ω

n+1/2
k )(ω̄n

k − ωn
k ) + noise

ω
n+1/2
k =

ωn+1
k + ωn

k

|ωn+1
k + ωn

k |

ω̄n
k =

Jn
k

|Jn
k |

, Jn
k =

∑

j,|Xn
j −Xn

k |≤R

ωn
j
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12Time continuous Vicsek algorithm

➠ Letting ∆t → 0 gives

Ẋk(t) = ωk(t)

dωk(t) = (Id − ωk ⊗ ωk)(ν(ω̄k − ωk)dt +
√

2DdBt)

ω̄k =
Jk

|Jk|
, Jk =

∑

j,|Xj−Xk|≤R

ωj

ν = τ−1 = interaction frequency
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13Time continuous Vicsek algorithm

➠ Letting ∆t → 0 gives

Ẋk(t) = ωk(t)

dωk(t) = (Id − ωk ⊗ ωk)(νω̄kdt +
√

2DdBt)

ω̄k =
Jk

|Jk|
, Jk =

∑

j,|Xj−Xk|≤R

ωj
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➟ satisfies a Fokker-Planck equation
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14Mean-field model

➠ f(x, ω, t) dx dω = probability of finding a particle
in dx dω at time t

➟ satisfies a Fokker-Planck equation

∂tf + ω · ∇xf + ∇ω · (Ff) = D∆ωf

F = ν(Id − ω ⊗ ω)ω̄

ω̄ =
J

|J | , J =

∫

|y−x|≤R,|υ|=1

υf(y, υ, t) dy dυ
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14Mean-field model

➠ f(x, ω, t) dx dω = probability of finding a particle
in dx dω at time t

➟ satisfies a Fokker-Planck equation

∂tf + ω · ∇xf + ∇ω · (Ff) = D∆ωf

F = ν(Id − ω ⊗ ω)ω̄

ω̄ =
J

|J | , J =

∫

|y−x|≤R,|υ|=1

υf(y, υ, t) dy dυ

➠ Choice of time scale: ν = 1
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➟ x̃ = εx, t̃ = εt with ε ≪ 1

➟ Interaction radius is microscopic: R̃ = εR
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15Rescaled mean-field model

➠ Passage to macroscopic time and space scales

➟ x̃ = εx, t̃ = εt with ε ≪ 1

➟ Interaction radius is microscopic: R̃ = εR

ε(∂tf
ε + ω · ∇xf

ε) + ∇ω · (F εf ε) = D∆ωf ε

F ε = (Id − ω ⊗ ω)ω̄ε

ω̄ε =
Jε

|Jε| , Jε =

∫

|y−x|≤εR, |υ|=1

υf ε(y, υ, t) dy dυ
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16Equivalent mean-field model

➠ Expansion gives

ω̄ε = Ωε + O(ε2)

Ωε =
jε

|jε| , jε =

∫

|υ|=1

υf ε(x, υ, t) dυ

➟ Ωε is the direction of the local flux
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16Equivalent mean-field model

➠ Expansion gives

ω̄ε = Ωε + O(ε2)

Ωε =
jε

|jε| , jε =

∫

|υ|=1

υf ε(x, υ, t) dυ

➟ Ωε is the direction of the local flux

➠ Rescaled model equivalent (up to HOT) to

ε(∂tf
ε + ω · ∇xf

ε) + ∇ω · (F ε
0 f ε) = D∆ωf ε

F ε
0 = (Id − ω ⊗ ω)Ωε
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3. From mean-field model to
’hydrodynamics’
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18Collision operator

➠ Model can be written

∂tf
ε + ω · ∇xf

ε =
1

ε
Q(f ε)

with ’collision operator’

Q(f) = −∇ω · (Ff f) + D∆ωf

Ff = (Id − ω ⊗ ω)Ωf

Ωf =
jf

|jf |
, jf =

∫

|υ|=1

υf(x, υ, t) dυ
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18Collision operator

➠ Model can be written

∂tf
ε + ω · ∇xf

ε =
1

ε
Q(f ε)

with ’collision operator’

Q(f) = −∇ω · (Ff f) + D∆ωf

Ff = (Id − ω ⊗ ω)Ωf

Ωf =
jf

|jf |
, jf =

∫

|υ|=1

υf(x, υ, t) dυ

➠ Problem: find the formal limit ε → 0 of this
model
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➟ Introduce the solution of [. . .] = 0

➟ For any arbitrary Ω, ∃ a unique normalized
solution f = MΩ s.t. Ωf = Ω
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191st step: find the equilibria

➠ At leading order, dynamics takes place on the
manifold of equilibria E = {f |Q(f) = 0}

➠ Rewrite

Q(f) = ∇ω · [−Ff f + D∇ωf ]

➟ Introduce the solution of [. . .] = 0

➟ For any arbitrary Ω, ∃ a unique normalized
solution f = MΩ s.t. Ωf = Ω

MΩ(ω) = CD exp
(ω · Ω)

D
,

∫

MΩ(ω) dω = 1
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20Equilibria

➠ Q(f) can be written

Q(f) = D∇ω ·
[

MΩf
∇ω

(

f

MΩf

)]
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20Equilibria

➠ Q(f) can be written

Q(f) = D∇ω ·
[

MΩf
∇ω

(

f

MΩf

)]

➠ Entropy inequality

H(f) =

∫

Q(f)
f

MΩf

dω = −D

∫

MΩf

∣

∣

∣

∣

∇ω

(

f

MΩf

)∣

∣

∣

∣

2

≤ 0
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20Equilibria

➠ Q(f) can be written

Q(f) = D∇ω ·
[

MΩf
∇ω

(

f

MΩf

)]

➠ Entropy inequality

H(f) =

∫

Q(f)
f

MΩf

dω = −D

∫

MΩf

∣

∣

∣

∣

∇ω

(

f

MΩf

)∣

∣

∣

∣

2

≤ 0

➠ E = { ρMΩ(ω) for arbitrary ρ ∈ R+ and Ω ∈ S
2 }

(or S
1 in dim 2)

➟ dim E = 3 (= 2 in dim 2)
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21Limit of f ε

➠ Particular cases:

➟ D = 0 (no noise): all particles concentrate on velocity

ω = Ω: MΩ(ω) = δ(ω, Ω)

➟ D = ∞ (large noise): velocity distribution is isotropic:

MΩ(ω) = 1/4π (= 1/2π in dim = 2)
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21Limit of f ε

➠ Particular cases:

➟ D = 0 (no noise): all particles concentrate on velocity

ω = Ω: MΩ(ω) = δ(ω, Ω)

➟ D = ∞ (large noise): velocity distribution is isotropic:

MΩ(ω) = 1/4π (= 1/2π in dim = 2)

➠ When ε → 0:

f ε(x, ω, t) → ρ(x, t)MΩ(x,t)(ω)

➠ Problem: find the dependence of ρ and Ω(x, t)
upon (x, t)
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22Collision invariant (conserved quantity)

➠ Function ψ(ω) such that
∫

Q(f)ψ dω = 0, ∀f

➟ Form a vector space C
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22Collision invariant (conserved quantity)

➠ Function ψ(ω) such that
∫

Q(f)ψ dω = 0, ∀f

➟ Form a vector space C

➠ Use:

➟ Multiply eq. by ψ: ε−1 term disappears

➟ Find a conservation law

➟ Problem fully determined if dim C = dim E
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23Lack of collision invariants

➠ Here dim C = 1 because C = Span{1}
➟ dim E = 3 > dim C = 1

➟ Only conservation of mass

∂tρ + ∇x · (c1ρΩ) = 0, c1 = |jMΩ
| < 1
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23Lack of collision invariants

➠ Here dim C = 1 because C = Span{1}
➟ dim E = 3 > dim C = 1

➟ Only conservation of mass

∂tρ + ∇x · (c1ρΩ) = 0, c1 = |jMΩ
| < 1

➠ Is the limit problem ill-posed ?

➟ Answer = no

➟ find eq. for Ω by weekening the concept of collision

invariant
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24Generalized collision invariant

➠ Given Ω, find ψΩ a GCI, such that
∫

Q(f)ψΩ dω = 0, ∀f such that Ωf = Ω
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24Generalized collision invariant

➠ Given Ω, find ψΩ a GCI, such that
∫

Q(f)ψΩ dω = 0, ∀f such that Ωf = Ω

➠ Thm: given Ω, the GCI form a 3-dim vector

space spanned by 1 and ~ψΩ(ω)

➠ ~ψΩ(ω) = Ω×ω
|Ω×ω|g(Ω · ω) with g(µ) sol. of an

elliptic eq.:

−(1 − µ2)∂µ(e
µ/d(1 − µ2)∂µg) + eµ/dg = −(1 − µ2)3/2eµ/d
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25Use of generalized collision invariant

➠ Multiply eq. by ~ψΩfε

➟ O(ε−1) terms disappear

➟ Let ε → 0: ~ψΩfε → ~ψΩ

➟ Get eq.
∫

(∂t(ρMΩ) + ω · ∇x(ρMΩ)) ~ψΩ dω = 0
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25Use of generalized collision invariant

➠ Multiply eq. by ~ψΩfε

➟ O(ε−1) terms disappear

➟ Let ε → 0: ~ψΩfε → ~ψΩ

➟ Get eq.
∫

(∂t(ρMΩ) + ω · ∇x(ρMΩ)) ~ψΩ dω = 0

➠ Not a conservation equation because of

dependence of ~ψΩ upon Ω
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26Macro model of Couzin-Vicsek dynamics

➠ ρ(x, t) and Ω(x, t) evolve according to

∂tρ + ∇x · (c1ρΩ) = 0

ρ (∂tΩ + c2(Ω · ∇)Ω) + D (Id − Ω ⊗ Ω)∇xρ = 0

|Ω| = 1
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26Macro model of Couzin-Vicsek dynamics

➠ ρ(x, t) and Ω(x, t) evolve according to

∂tρ + ∇x · (c1ρΩ) = 0

ρ (∂tΩ + c2(Ω · ∇)Ω) + D (Id − Ω ⊗ Ω)∇xρ = 0

|Ω| = 1

➠ c2 defined as a particular moment of the GCI

➟ c2 < c1
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4. Properties of the hydrodynamic model
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28Hydrodynamic Vicsek model

➠ By time rescaling

∂tρ + ∇x · (ρΩ) = 0

ρ (∂tΩ + c(Ω · ∇)Ω) + d (Id − Ω ⊗ Ω)∇xρ = 0

|Ω| = 1

where c = c2/c1 < 1, d = D/c1
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28Hydrodynamic Vicsek model

➠ By time rescaling

∂tρ + ∇x · (ρΩ) = 0

ρ (∂tΩ + c(Ω · ∇)Ω) + d (Id − Ω ⊗ Ω)∇xρ = 0

|Ω| = 1

where c = c2/c1 < 1, d = D/c1

➠ Hyperbolic model with constraint

➟ Non-conservative terms arise from the constraint

➠ Velocity waves are slower than density waves

➟ Similar situation to traffic
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29Numerical simulation: GCI

Function g/D as a function of

ω · Ω for small values of D
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29Numerical simulation: GCI

Function g/D as a function of

ω · Ω for small values of D

c and d as a function of noise level D
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30With cone of vision

c as a function of noise level D for various apertures of vision cone (2D

case)

The more forward individuals look, the more backwards velocity waves

propagate



(Summary) (Conclusion)Pierre Degond - Fluid models for complex systems - Banff, Sept. 2008

31Mills are stationary solutions

➠ Mills: ρ = ρ(r), Ω = x⊥/r

➟ are solutions of macro CVA model iff:

ρ(r) = ρ0

(

r

r0

)
c
d
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31Mills are stationary solutions

➠ Mills: ρ = ρ(r), Ω = x⊥/r

➟ are solutions of macro CVA model iff:

ρ(r) = ρ0

(

r

r0

)
c
d

➠ Shape depends on noise level

➟ Small noise: ρ convex function of r: sharp edged mills

➟ Large noise: ρ concave function of r: fuzzy edges
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32Mills: numerical solutions
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33Mills: numerical solutions
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34Mills: numerical solutions
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35Order parameter (after Vicsek)

➠ Coeff. c1 measures the order / disorder

c1 = |jMΩ
|

➟ c1 ∼ 1: particle directions are aligned

➟ c1 ∼ 0: particle directions are random
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35Order parameter (after Vicsek)

➠ Coeff. c1 measures the order / disorder

c1 = |jMΩ
|

➟ c1 ∼ 1: particle directions are aligned

➟ c1 ∼ 0: particle directions are random

➠ In our model: order parameter remains uniform

➟ c1 fixed by the value of D

➠ 6= simulations: higher order at higher density

➟ Possible cure: make D(ρ).

➟ Justification: Fluctuations in the mean-field limit



(Summary) (Conclusion)Pierre Degond - Fluid models for complex systems - Banff, Sept. 2008

36Simulation of Vicsek particle model

Left: Point position of the particles

Right: Density (black) and order parameter (red) profiles transverse to a

band

After Chate et al, arXiv:0712.206.2V1
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37Phase transition as noise level varies

Left: Order parameter as a fct of noise level D (after Vicsek)

Right: Order parameter as a fct of noise level D (after hydro model)
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38Phase transition as density varies

Order parameter as a fct of density (after Vicsek)

In hydro model, order parameter does not depend on density
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39Phase transition

➠ Hydro model unable to reproduce phase
transition of Vicsek particle model

➟ Unique equilibria (no bi-stability)

➟ Hyperbolicity (no instability)

➟ Smooth variation of the coefficients wrt noise level D
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39Phase transition

➠ Hydro model unable to reproduce phase
transition of Vicsek particle model

➟ Unique equilibria (no bi-stability)

➟ Hyperbolicity (no instability)

➟ Smooth variation of the coefficients wrt noise level D

➠ Possible explanation:

➟ Vicsek particle simulations are not in hydro regime

➟ Interaction radius RV icsek = O(1) | RHydro = O(ε)

➟ εV icsek ∼ 0.03 not very small

➟ requires a non-local collision operator with account of

fluctuations of particle number
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4. Conclusion
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41Hydrodynamics of Vicsek model

➠ Hydrodynamics of Vicsek model derived under
specific scaling hypotheses

➠ Non-standard features have been outlined

➟ Lack of collision invariants

➠ A new concept has been proposed

➟ Generalized collision invariant

➠ Leads to the first derivation of a non-conservative
model from kinetic theory

➟ Published in [D. Motsch, M3AS, Vol. 18, (2008)]
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42Comparison of Vicsek and hydrodynamics

➠ Shows some deficiencies of hydro model

➟ Constant order parameter

➟ Lack of phase transition, ...
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42Comparison of Vicsek and hydrodynamics

➠ Shows some deficiencies of hydro model

➟ Constant order parameter

➟ Lack of phase transition, ...

➠ Possible cures are proposed

➟ Non-local collision operator

➟ Account of fluctuations

➟ Diffusive corrections (Chapman-Enskog), ...
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43Future goals

➠ Understanding

➟ Describe is not explain

➟ Start from ’first principles’ principles

➟ Link with experiment
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43Future goals

➠ Understanding

➟ Describe is not explain

➟ Start from ’first principles’ principles

➟ Link with experiment

➠ Prediction

➠ Optimal design and control
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