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Step 2: Exact separation phenomenon
[a, b] gap in Spect(Mp) [ggl(a), go%b)] gap in Spect(Ay)

N-I eigenvalues of Ay | eigenvalues of Ay

20 Pos a

N-I eigenvalues of My | eigenvalues of My



Theorem

Exact separation phenomenon
Ko (01,---,0) =

{pejl ,p9J7J_0_+1}U[—20',2O']U{p9J+U, ,pel}

[a,b] C “Ky(61,...,0y), in €{0,...,N} s.t

>\iN+1(AN) < and )\,'N(AN) >

1
8-(a)

()\0 =400 and An41 = —OO).
Then

1
g(b)

PAiy+1(Mn) < a and Xj,(My) > b, for large N | = 1.
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In the other particular case (Ay); = % V1 <1i,j<N, usymmetric
with sub-gaussian moments, D. Féral and S. Péché: if 8 > o, then

\/N(/\l(MN) - ,09) 3>/\/(07U§), op=04/1— ‘;—;.
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I\A/IN_lz the N — 1 x N — 1 matrix obtained from My removing the
. . VN 7 . i

first row and the first column. = mMN_l is a non-Deformed
Wigner matrix associated with the measure pu.

My = *((Mn)21,- -, (Mn)ni) -

v

(Wn) *
0+ \/NN“ M3
My =
M. Mp_1

~

I\A/I,V,l, M.1, (Wp)11 are independent.

=t (v1,..., vy) eigenvector relative to A1 := A1(Mpy).
= "(va,...,wn)

)\1V1=(9+(V\VFA),) +
MV =viMy+ My, V

MV
I\/INV:)\1V<:>{ 1
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VN1 —p9) = (W) + VN(TG ()M — )
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VN = pg) = (W) + VN(M3G ()M — )

= (Wn)u +

+{02"_262 + 0(1)} VN(M — o)



0.2

VN1 —pg) = (W) + VN3 (Al)Ml—g)
= (Wn)u1+
52

+{0292 + 0(1)} VN(\ = pp)

(using g5(p9) = )



{1+ 522 + o)} VA4 — o) + 0(1)

= (Wn)u + VN(M: G (pg) M1 — 0°try_1G(pg))



{14 570 + o)} V(AL = po) + o(1)
= (Wn)11 + VN(M3 G (pg) M1 — o?trn-1G(ps))

N-—-1 1 o~ .
{YITFIG(/)@)YNfl — TfG(ﬂe)}

= (W, 2 /2= -
(Wh)11+o NN T

+o(1)



Theorem

(Bai-Yao and Baik-Silverstein)
B = (bjj): a N x N random Hermitian matrix
Yn =t (y1,...,yn): an independent vector of size N whith i.i.d
standardized entries with bounded fourth moment and s.t.
E(y2) = 0 if y1 is complex. Assume that

(i) 3 a> 0 (not depending on N) such that ||B|| < a,

(ii) %TrB2 converges in probability to a number a5,
(i) & S, b converges in probability to a number a3.

Then the random variable ﬁ( YyBYn — TrB) converges in
distribution to a Gaussian variable with mean zero and variance
(Elyi|* =1 - t/2)at + (t/2)as

where t = 4 when Y7 is real and is 2 when y; is complex.




{% + 0(1)} VN(A1 — pg) + o(1)

N—-1 1

= W 2 TV v
Yy VI T

{Y/\*/,la(PO)YN*I - Tra(p())}

«—
«—

i N(0, vp)
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e Dealing with (Ay); = & V1 <i,j < N, S. Péché and D. Féral
proved that If somebody is able to establish the fluctuations in the
deformed GOE case then there will be universality of the
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Corollary of our result by the orthogonal invariance of a GOE
matrix: Let Ay be an arbitrary deterministic symmetric matrix of
rank one having a non-null eigenvalue 6 such that 8 > o. Then the
largest eigenvalue of the Deformed GOE fluctuates as

m<)\1(MN) _ pg) D, N(0,202).

= UNIVERSALITY OF THE FLUCTUATIONS OF A;(Mp) with
a full deformation (Ay);j = % V1i<i,j<N.



