The largest eigenvalue of finite rank deformation of large Wigner matrices: convergence and non-universality of the fluctuations M. Capitaine, C. Donati-Martin, D. Féral I M T Univ Toulouse 3 and CNRS, Equipe de Statistique et Probabilités UPMC Univ Paris 06 and CNRS, Laboratoire de Probabilités et Modèles Aléatoires ## Step 1: Inclusion of the spectrum of $M_N = W_N/\sqrt{N} + A_N$ $$\mathbb{P}[\operatorname{Spect}(M_N) \subset K_{\sigma}(\theta_1, \cdots, \theta_J) + (-\varepsilon; \varepsilon) \text{ for large } N] = 1.$$ $$K_{\sigma}(\theta_1, \cdots, \theta_J) := \left\{ \rho_{\theta_J}; \cdots; \rho_{\theta_{J-J-\sigma+1}} \right\} \cup [-2\sigma; 2\sigma] \cup \left\{ \rho_{\theta_{J+\sigma}}; \cdots; \rho_{\theta_1} \right\}.$$ ## Step 1: Inclusion of the spectrum of $M_N = W_N/\sqrt{N} + A_N$ $$\mathbb{P}[\operatorname{Spect}(M_N) \subset K_{\sigma}(\theta_1, \cdots, \theta_J) + (-\varepsilon; \varepsilon) \text{ for large } N] = 1.$$ $$K_{\sigma}(\theta_1, \cdots, \theta_J) := \left\{ \rho_{\theta_J}; \cdots; \rho_{\theta_{J-J-\sigma+1}} \right\} \cup [-2\sigma; 2\sigma] \cup \left\{ \rho_{\theta_{J+\sigma}}; \cdots; \rho_{\theta_1} \right\}.$$ $$\rho_{\theta_i} = \theta_i + \frac{\sigma^2}{\theta_i} \text{ if } |\theta_i| > \sigma. \ \theta_i = \frac{1}{g_{\sigma}(\rho_{\theta_i})}, \ g_{\sigma}(z) = \int \frac{1}{z-t} d\mu_{sc}(t).$$ # Step 1: Inclusion of the spectrum of $M_N = W_N/\sqrt{N} + A_N$ $$\mathbb{P}[\operatorname{Spect}(M_N) \subset \mathcal{K}_{\sigma}(\theta_1,\cdots,\theta_J) + (-arepsilon;arepsilon) ext{ for large } N \] = 1.$$ $$\mathcal{K}_{\sigma}(\theta_1,\cdots,\theta_J) := \left\{ \rho_{\theta_J};\cdots;\rho_{\theta_{J-J-\sigma+1}} \right\} \cup [-2\sigma;2\sigma] \cup \left\{ \rho_{\theta_{J+\sigma}};\cdots;\rho_{\theta_1} \right\}.$$ $$\rho_{\theta_i} = \theta_i + \frac{\sigma^2}{\theta_i} \text{ if } |\theta_i| > \sigma. \ \theta_i = \frac{1}{g_{\sigma}(\rho_{\theta_i})}, \ g_{\sigma}(z) = \int \frac{1}{z-t} d\mu_{sc}(t).$$ #### Step 2: Exact separation phenomenon $$[a,b]$$ gap in $\operatorname{Spect}(M_N)\longleftrightarrow [rac{1}{g_{\sigma}(a)}, rac{1}{g_{\sigma}(b)}]$ gap in $\operatorname{Spect}(A_N)$ N-l eigenvalues of A_N I eigenvalues of A_N N-I eigenvalues of M_N I eigenvalues of M_N #### Theorem #### **Exact separation phenomenon** $$\mathcal{K}_{\sigma}(\theta_{1}, \dots, \theta_{J}) := \left\{ \rho_{\theta_{J}}; \dots; \rho_{\theta_{J-J-\sigma+1}} \right\} \cup \left[-2\sigma; 2\sigma \right] \cup \left\{ \rho_{\theta_{J+\sigma}}; \dots; \rho_{\theta_{1}} \right\}.$$ $$[a, b] \subset {}^{c}\mathcal{K}_{\sigma}(\theta_{1}, \dots, \theta_{J}), i_{N} \in \{0, \dots, N\} \text{ s.t}$$ $$\lambda_{i_{N}+1}(A_{N}) < \frac{1}{g_{\sigma}(a)} \quad \text{and} \quad \lambda_{i_{N}}(A_{N}) > \frac{1}{g_{\sigma}(b)}$$ ($$\lambda_0 := +\infty$$ and $\lambda_{N+1} := -\infty$). Then $$\mathbb{P}[\lambda_{i_N+1}(M_N) < a \text{ and } \lambda_{i_N}(M_N) > b, \text{ for large } N] = 1.$$ $$\mathbb{P}[\operatorname{Spect}(M_N) \subset K_{\sigma}(\theta_1, \cdots, \theta_J) + (-\varepsilon; \varepsilon) \text{ for large } N] = 1.$$ $$\begin{split} \mathcal{K}_{\sigma}(\theta_1,\cdots,\theta_J) := \left\{ \rho_{\theta_J};\cdots;\rho_{\theta_{J-J_{-\sigma}+1}} \right\} \cup [-2\sigma;2\sigma] \cup \left\{ \rho_{\theta_{J+\sigma}};\cdots;\rho_{\theta_1} \right\}. \\ \Longrightarrow \mathbb{P}[\lambda_1(M_N) < \rho_{\theta_1} + \epsilon \text{ for large } N \mid = 1. \end{split}$$ $$\mathbb{P}[\operatorname{Spect}(M_N) \subset \mathcal{K}_{\sigma}(\theta_1, \cdots, \theta_J) + (-\varepsilon; \varepsilon) \text{ for large } N] = 1.$$ $$\begin{split} \mathcal{K}_{\sigma}(\theta_1,\cdots,\theta_J) := \left\{ \rho_{\theta_J};\cdots;\rho_{\theta_{J-J_{-\sigma}+1}} \right\} &\cup [-2\sigma;2\sigma] \cup \left\{ \rho_{\theta_{J_{+\sigma}}};\cdots;\rho_{\theta_1} \right\}. \\ \Longrightarrow &\mathbb{P}[\lambda_1(M_{N}) < \rho_{\theta_1} + \epsilon \text{ for large } N \text{ }] = 1. \end{split}$$ By the exact separation phenomenon with $[a;b] = [\theta_2 + \eta; \theta_1 - \eta],$ $(\theta_1 - \eta = \frac{1}{g_\sigma(\rho_0 - \epsilon)})$ $$\mathbb{P}[\lambda_1(M_N) > \rho_{\theta_1} - \epsilon$$, for large $N \] = 1$. $$\mathbb{P}[\operatorname{Spect}(M_N) \subset \mathcal{K}_{\sigma}(\theta_1,\cdots,\theta_J) + (-\varepsilon;\varepsilon) \text{ for large } N] = 1.$$ $$\begin{split} \mathcal{K}_{\sigma}(\theta_1,\cdots,\theta_J) := \left\{ \rho_{\theta_J};\cdots;\rho_{\theta_{J-J_{-\sigma}+1}} \right\} &\cup [-2\sigma;2\sigma] \cup \left\{ \rho_{\theta_{J_{+\sigma}}};\cdots;\rho_{\theta_1} \right\}. \\ \Longrightarrow &\mathbb{P}[\lambda_1(M_{N}) < \rho_{\theta_1} + \epsilon \text{ for large } N \text{ }] = 1. \end{split}$$ By the exact separation phenomenon with $[a;b] = [\theta_2 + \eta; \theta_1 - \eta],$ $(\theta_1 - \eta = \frac{1}{g_\sigma(\rho_0 - \epsilon)})$ $$\mathbb{P}[\lambda_1(M_N) > \rho_{\theta_1} - \epsilon$$, for large $N \] = 1$. $$\Longrightarrow \mathbb{P}[\rho_{\theta_1} - \epsilon < \lambda_1(M_N) < \rho_{\theta_1} + \epsilon \text{ for large } N] = 1.$$ #### Theorem $A_N = \operatorname{diag}(\theta, 0, \cdots, 0)$ with $\theta > \sigma$. Then $$\sqrt{N}\Big(\lambda_1(M_N)-\rho_\theta\Big) \stackrel{\mathcal{D}}{\longrightarrow} (1-\frac{\sigma^2}{\theta^2})\Big\{\mu*\mathcal{N}(0,v_\theta)\Big\}.$$ $$v_{\theta} = \frac{t}{4} \left(\frac{m_4 - 3\sigma^4}{\theta^2} \right) + \frac{t}{2} \frac{\sigma^4}{\theta^2 - \sigma^2}$$ with t=4 (resp. t=2) if W_N is real (resp. complex) and $m_4:=\int x^4 d\mu(x)$. \Rightarrow NON-UNIVERSALITY OF THE FLUCTUATIONS OF $\lambda_1(M_N)$ since they do depend on μ #### **Theorem** $A_N = \operatorname{diag}(\theta, 0, \cdots, 0)$ with $\theta > \sigma$. Then $$\sqrt{N}\Big(\lambda_1(M_N)-\rho_\theta\Big) \xrightarrow{\mathcal{D}} (1-\frac{\sigma^2}{\theta^2})\Big\{\mu*\mathcal{N}(0,v_\theta)\Big\}.$$ $$v_{\theta} = \frac{t}{4} \left(\frac{m_4 - 3\sigma^4}{\theta^2} \right) + \frac{t}{2} \frac{\sigma^4}{\theta^2 - \sigma^2}$$ with t=4 (resp. t=2) if W_N is real (resp. complex) and $m_4:=\int x^4 d\mu(x)$. # \Rightarrow NON-UNIVERSALITY OF THE FLUCTUATIONS OF $\lambda_1(M_N)$ since they do depend on μ In the other particular case $(A_N)_{ij}=\frac{\theta}{N} \ \forall 1\leq i,j\leq N,\ \mu$ symmetric with sub-gaussian moments, D. Féral and S. Péché: if $\theta>\sigma$, then $\sqrt{N}\Big(\lambda_1(M_N)-\rho_\theta\Big) \stackrel{\mathcal{D}}{\longrightarrow} \mathcal{N}(0,\sigma_\theta^2),\ \sigma_\theta=\sigma\sqrt{1-\frac{\sigma^2}{\theta^2}}.$ \widehat{M}_{N-1} : the $N-1 \times N-1$ matrix obtained from M_N removing the first row and the first column. $\Rightarrow \frac{\sqrt{N}}{\sqrt{N-1}} \widehat{M}_{N-1}$ is a non-Deformed Wigner matrix associated with the measure μ . $$\check{M}_{\cdot 1} = {}^t \left((M_N)_{21}, \dots, (M_N)_{N1} \right).$$ $$M_N = \left(\begin{array}{c|c} \theta + \frac{(W_N)_{11}}{\sqrt{N}} & \check{M}_{\cdot 1}^* \\ \\ \check{M}_{\cdot 1} & \widehat{M}_{N-1} \end{array} \right)$$ $$\widehat{M}_{N-1}, \ \check{M}_{\cdot 1}, \ (W_N)_{11} \ \text{are independent}.$$ \widehat{M}_{N-1} : the $N-1 \times N-1$ matrix obtained from M_N removing the first row and the first column. $\Rightarrow \frac{\sqrt{N}}{\sqrt{N-1}} \widehat{M}_{N-1}$ is a non-Deformed Wigner matrix associated with the measure μ . $$\check{M}_{\cdot 1} = {}^t \left((M_N)_{21}, \dots, (M_N)_{N1} \right).$$ $g = \left(\begin{array}{c|c} \theta + \frac{(W_N)_{11}}{\sqrt{N}} & \check{M}_{\cdot 1}^* \\ \hline \end{array} \right)$ $$M_{N} = \begin{pmatrix} \theta + \frac{(W_{N})_{11}}{\sqrt{N}} & \check{M}_{\cdot 1}^{*} \\ \check{M}_{\cdot 1} & \widehat{M}_{N-1} \end{pmatrix}$$ $$\widehat{M}_{N-1} = \check{M}_{N-1} (W_{N})_{N-1} \text{ are independently as a property of the sum of the property of the sum of the property pro$$ \widehat{M}_{N-1} , $\widecheck{M}_{\cdot 1}$, $(W_N)_{11}$ are independent. $$V = {}^t (v_1, \dots, v_N)$$ eigenvector relative to $\lambda_1 := \lambda_1(M_N)$. $\widehat{V} = {}^t (v_2, \dots, v_N)$ \widehat{M}_{N-1} : the $N-1 \times N-1$ matrix obtained from M_N removing the first row and the first column. $\Rightarrow \frac{\sqrt{N}}{\sqrt{N-1}} \widehat{M}_{N-1}$ is a non-Deformed Wigner matrix associated with the measure μ . $$\check{M}_{\cdot 1} = {}^{t} ((M_N)_{21}, \dots, (M_N)_{N1}).$$ $$M_N = \left(egin{array}{c|c} heta + rac{(W_N)_{11}}{\sqrt{N}} & \check{M}_{\cdot 1}^* \ & & & \\ & \check{M}_{\cdot 1} & \widehat{M}_{N-1} \end{array} ight)$$ \widehat{M}_{N-1} , $\widecheck{M}_{\cdot 1}$, $(W_N)_{11}$ are independent. $$V = {}^t (v_1, \dots, v_N)$$ eigenvector relative to $\lambda_1 := \lambda_1(M_N)$. $\widehat{V} = {}^t (v_2, \dots, v_N)$ $$M_N V = \lambda_1 V \iff \begin{cases} \lambda_1 v_1 = (\theta + \frac{(W_N)_{11}}{\sqrt{N}}) v_1 + \check{M}_{\cdot 1}^* \widehat{V} \\ \lambda_1 \widehat{V} = v_1 \check{M}_{\cdot 1} + \widehat{M}_{N-1} \widehat{V} \end{cases}$$ $$0 < \delta < \frac{\rho_{\theta} - 2\sigma}{4}. \ (\rho_{\theta} > 2\sigma)$$ $$\Omega_{N} = \left\{ \lambda_{1}(\widehat{M}_{N-1}) \leq 2\sigma + \delta; \lambda_{N-1}(\widehat{M}_{N-1}) \geq -2\sigma - \delta; \lambda_{1}(M_{N}) \geq \rho_{\theta} - \delta \right\}$$ $$\lim_{N \to +\infty} \mathbb{P}(\Omega_{N}) = 1.$$ $$0 < \delta < \frac{\rho_{\theta} - 2\sigma}{4}. \ (\rho_{\theta} > 2\sigma)$$ $$\Omega_{N} = \left\{ \lambda_{1}(\widehat{M}_{N-1}) \leq 2\sigma + \delta; \lambda_{N-1}(\widehat{M}_{N-1}) \geq -2\sigma - \delta; \lambda_{1}(M_{N}) \geq \rho_{\theta} - \delta \right\}$$ $$\lim_{N \to +\infty} \mathbb{P}(\Omega_{N}) = 1.$$ On $$\Omega_N$$, $\widehat{G}(\lambda_1) := (\lambda_1 I_{N-1} - \widehat{M}_{N-1})^{-1}$ $$0 < \delta < \frac{\rho_{\theta} - 2\sigma}{4}. \ (\rho_{\theta} > 2\sigma)$$ $$\Omega_{N} = \left\{ \lambda_{1}(\widehat{M}_{N-1}) \leq 2\sigma + \delta; \lambda_{N-1}(\widehat{M}_{N-1}) \geq -2\sigma - \delta; \lambda_{1}(M_{N}) \geq \rho_{\theta} - \delta \right\}$$ $$\lim_{N \to +\infty} \mathbb{P}(\Omega_{N}) = 1.$$ $$\Omega_{N} \Omega_{N}(\widehat{G}(\lambda_{N})) := (\lambda_{N} + \lambda_{N})^{-1}$$ On $$\Omega_N$$, $\widehat{G}(\lambda_1) := (\lambda_1 I_{N-1} - \widehat{M}_{N-1})^{-1}$ $$\begin{cases} \lambda_1 v_1 = (\theta + \frac{(W_N)_{11}}{\sqrt{N}})v_1 + \widecheck{M}_{\cdot 1}^* \widehat{V} \\ \lambda_1 \widehat{V} = v_1 \widecheck{M}_{\cdot 1} + \widehat{M}_{N-1} \widehat{V} \end{cases}$$ $$\Leftrightarrow \begin{cases} \lambda_1 v_1 = \theta v_1 + \frac{(W_N)_{11}}{\sqrt{N}} v_1 + v_1 \widecheck{M}_{\cdot 1}^* \widehat{G}(\lambda_1) \widecheck{M}_{\cdot 1}. \end{cases}$$ $$\Leftrightarrow \begin{cases} \lambda_1 v_1 = \theta v_1 + \frac{(W_N)_{11}}{\sqrt{N}} v_1 + v_1 \widecheck{M}_{\cdot 1}^* \widehat{G}(\lambda_1) \widecheck{M}_{\cdot 1}. \end{cases}$$ $$\widehat{V} = v_1 \widehat{G}(\lambda_1) M_{\cdot 1}.$$ $$\widehat{V} = v_1 \widehat{G}(\lambda_1) M_{\cdot 1}.$$ $$\begin{split} 0 &< \delta < \frac{\rho_{\theta}-2\sigma}{4}. \ (\rho_{\theta} > 2\sigma) \\ \Omega_{N} &= \left\{ \lambda_{1}(\widehat{M}_{N-1}) \leq 2\sigma + \delta; \lambda_{N-1}(\widehat{M}_{N-1}) \geq -2\sigma - \delta; \lambda_{1}(M_{N}) \geq \rho_{\theta} - \delta \right\} \\ \lim_{N \to +\infty} \mathbb{P}(\Omega_{N}) &= 1. \\ \text{On } \Omega_{N}, \ \widehat{G}(\lambda_{1}) &:= (\lambda_{1}I_{N-1} - \widehat{M}_{N-1})^{-1} \\ \left\{ \begin{array}{l} \lambda_{1}v_{1} &= (\theta + \frac{(W_{N})_{11}}{\sqrt{N}})v_{1} + \widecheck{M}_{\cdot 1}^{*}\widehat{V} \\ \lambda_{1}\widehat{V} &= v_{1}\widecheck{M}_{\cdot 1} + \widehat{M}_{N-1}\widehat{V} \end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l} \lambda_{1}v_{1} &= \theta v_{1} + \frac{(W_{N})_{11}}{\sqrt{N}}v_{1} + v_{1}\widecheck{M}_{\cdot 1}^{*}\widehat{G}(\lambda_{1})\widecheck{M}_{\cdot 1}. \\ \widehat{V} &= v_{1}\widehat{G}(\lambda_{1})\widecheck{M}_{\cdot 1}. \end{array} \right. \end{split}$$ $$\Rightarrow \lambda_1 = \theta + \frac{(W_N)_{11}}{\sqrt{N}} + \check{M}_{.1}^* \widehat{G}(\lambda_1) \check{M}_{.1}$$ $$\sqrt{N}(\lambda_1 - \rho_\theta) = (W_N)_{11} + \sqrt{N}(\check{M}_{\cdot 1}^* \widehat{G}(\lambda_1) \check{M}_{\cdot 1} - \frac{\sigma^2}{\theta})$$ $$\sqrt{N}(\lambda_{1} - \rho_{\theta}) = (W_{N})_{11} + \sqrt{N}(\check{M}_{\cdot 1}^{*}\widehat{G}(\lambda_{1})\check{M}_{\cdot 1} - \frac{\sigma^{2}}{\theta})$$ $$= (W_{N})_{11} + \sqrt{N}(\check{M}_{\cdot 1}^{*}\widehat{G}(\rho_{\theta})\check{M}_{\cdot 1} - \frac{\sigma^{2}}{\theta})$$ $$+ \sqrt{N}\check{M}_{\cdot 1}^{*} \left[\widehat{G}(\lambda_{1}) - \widehat{G}(\rho_{\theta})\right] \check{M}_{\cdot 1}$$ $$\sqrt{N}(\lambda_{1} - \rho_{\theta}) = (W_{N})_{11} + \sqrt{N}(\check{M}_{\cdot 1}^{*}\widehat{G}(\lambda_{1})\check{M}_{\cdot 1} - \frac{\sigma^{2}}{\theta})$$ $$= (W_{N})_{11} + \sqrt{N}(\check{M}_{\cdot 1}^{*}\widehat{G}(\rho_{\theta})\check{M}_{\cdot 1} - \frac{\sigma^{2}}{\theta})$$ $$+ \left\{ \frac{\sigma^{2}}{\sigma^{2} - \theta^{2}} + o(1) \right\} \sqrt{N}(\lambda_{1} - \rho_{\theta})$$ $$\begin{split} \sqrt{N}(\lambda_1 - \rho_\theta) &= (W_N)_{11} + \sqrt{N}(\check{M}_{\cdot 1}^* \widehat{G}(\lambda_1) \check{M}_{\cdot 1} - \frac{\sigma^2}{\theta}) \\ &= (W_N)_{11} + \sqrt{N}(\check{M}_{\cdot 1}^* \widehat{G}(\rho_\theta) \check{M}_{\cdot 1} - \sigma^2 tr_{N-1} \widehat{G}(\rho_\theta)) \\ &+ \left\{ \frac{\sigma^2}{\sigma^2 - \theta^2} + o(1) \right\} \sqrt{N}(\lambda_1 - \rho_\theta) + o(1) \end{split}$$ $$(\text{using } g_{\sigma}(\rho_\theta) = \frac{1}{\theta})$$ $$\begin{split} \left\{1 + \frac{\sigma^2}{\theta^2 - \sigma^2} + o(1)\right\} \sqrt{N} (\lambda_1 - \rho_\theta) + o(1) \\ &= (W_N)_{11} + \sqrt{N} (\check{M}_{\cdot 1}^* \widehat{G}(\rho_\theta) \check{M}_{\cdot 1} - \sigma^2 tr_{N-1} \widehat{G}(\rho_\theta)) \end{split}$$ $$\left\{1 + \frac{\sigma^{2}}{\theta^{2} - \sigma^{2}} + o(1)\right\} \sqrt{N}(\lambda_{1} - \rho_{\theta}) + o(1)$$ $$= (W_{N})_{11} + \sqrt{N}(\check{M}_{.1}^{*}\widehat{G}(\rho_{\theta})\check{M}_{.1} - \sigma^{2}tr_{N-1}\widehat{G}(\rho_{\theta}))$$ $$= (W_{N})_{11} + \sigma^{2}\sqrt{\frac{N-1}{N}} \frac{1}{\sqrt{N-1}} \left\{Y_{N-1}^{*}\widehat{G}(\rho_{\theta})Y_{N-1} - Tr\widehat{G}(\rho_{\theta})\right\}$$ $$+o(1)$$ $$Y_{N-1} := \frac{\sqrt{N}}{\sigma} \check{M}_{\cdot 1}.$$ #### $\mathsf{Theorem}$ (Bai-Yao and Baik-Silverstein) $B = (b_{ij})$: a $N \times N$ random Hermitian matrix $Y_N = {}^t (y_1, ..., y_N)$: an independent vector of size N whith i.i.d standardized entries with bounded fourth moment and s.t. $\mathbb{E}(y_1^2) = 0$ if y_1 is complex. Assume that - (i) $\exists a > 0$ (not depending on N) such that $||B|| \leq a$, - (ii) $\frac{1}{N} \text{Tr} B^2$ converges in probability to a number a_2 , - (iii) $\frac{1}{N} \sum_{i=1}^{N} b_{ii}^2$ converges in probability to a number a_1^2 . Then the random variable $\frac{1}{\sqrt{N}}(Y_N^*BY_N - \operatorname{Tr} B)$ converges in distribution to a Gaussian variable with mean zero and variance $$(\mathbb{E}|y_1|^4 - 1 - t/2)a_1^2 + (t/2)a_2$$ where t = 4 when Y_1 is real and is 2 when y_1 is complex. $$\left\{\frac{\theta^{2}}{\theta^{2}-\sigma^{2}}+o(1)\right\}\sqrt{N}(\lambda_{1}-\rho_{\theta})+o(1)$$ $$= (W_{N})_{11}+\sigma^{2}\sqrt{\frac{N-1}{N}}\frac{1}{\sqrt{N-1}}\left\{Y_{N-1}^{*}\widehat{G}(\rho_{\theta})Y_{N-1}-Tr\widehat{G}(\rho_{\theta})\right\}$$ $$\downarrow \qquad \qquad \downarrow \downarrow$$ • Our approach dealing with $A_N=\mathrm{diag}(\theta,0,\cdots,0)$ with $\theta>\sigma$ is the same in the real setting as in the complex setting \Rightarrow NON-UNIVERSALITY OF THE FLUCTUATIONS OF $\lambda_1(M_N)$ - Our approach dealing with $A_N = \operatorname{diag}(\theta,0,\cdots,0)$ with $\theta > \sigma$ is the same in the real setting as in the complex setting \Rightarrow NON-UNIVERSALITY OF THE FLUCTUATIONS OF $\lambda_1(M_N)$ - Dealing with $(A_N)_{ij} = \frac{\theta}{N} \ \forall 1 \leq i, j \leq N$, S. Péché and D. Féral proved that If somebody is able to establish the fluctuations in the deformed GOE case then there will be universality of the fluctuations. - Our approach dealing with $A_N=\operatorname{diag}(\theta,0,\cdots,0)$ with $\theta>\sigma$ is the same in the real setting as in the complex setting \Rightarrow NON-UNIVERSALITY OF THE FLUCTUATIONS OF $\lambda_1(M_N)$ - Dealing with $(A_N)_{ij} = \frac{\theta}{N} \ \forall 1 \leq i,j \leq N$, S. Péché and D. Féral proved that If somebody is able to establish the fluctuations in the deformed GOE case then there will be universality of the fluctuations. Corollary of our result by the orthogonal invariance of a GOE matrix: Let A_N be an arbitrary deterministic symmetric matrix of rank one having a non-null eigenvalue θ such that $\theta > \sigma$. Then the largest eigenvalue of the Deformed GOE fluctuates as $$\sqrt{N}\Big(\lambda_1(M_N)- ho_{ heta}\Big) \stackrel{\mathcal{D}}{\longrightarrow} \mathcal{N}(0,2\sigma_{ heta}^2).$$ - Our approach dealing with $A_N = \operatorname{diag}(\theta,0,\cdots,0)$ with $\theta > \sigma$ is the same in the real setting as in the complex setting \Rightarrow NON-UNIVERSALITY OF THE FLUCTUATIONS OF $\lambda_1(M_N)$ - Dealing with $(A_N)_{ij} = \frac{\theta}{N} \ \forall 1 \leq i,j \leq N$, S. Péché and D. Féral proved that If somebody is able to establish the fluctuations in the deformed GOE case then there will be universality of the fluctuations. Corollary of our result by the orthogonal invariance of a GOE matrix: Let A_N be an arbitrary deterministic symmetric matrix of rank one having a non-null eigenvalue θ such that $\theta > \sigma$. Then the largest eigenvalue of the Deformed GOE fluctuates as $$\sqrt{N}\Big(\lambda_1(M_N)-\rho_{\theta}\Big) \stackrel{\mathcal{D}}{\longrightarrow} \mathcal{N}(0,2\sigma_{\theta}^2).$$ \Rightarrow UNIVERSALITY OF THE FLUCTUATIONS OF $\lambda_1(M_N)$ with a full deformation $(A_N)_{ij}= rac{\theta}{N}\ orall 1\leq i,j\leq N$.