Resolvent Behaviour of \mathscr{R}-diagonal operators

Todd Kemp
CLE Moore Instructor MIT
Banf and only Banf
January 17, 2008

The Ginibre Ensemble

- GinUE(N)
- circular
- \mathscr{R}-diagonal
- Properties
- Haagerup Ineq.
- *-Pairings
- Resolvent
- Blow-Up
- Moments
- References

The Ginibre ensemble $\operatorname{Gin} U E(N)$ is the space $\operatorname{Mat}_{N}(\mathbb{C})$ equipped with the probability measure

$$
\alpha_{N} e^{-X^{*} X} d X
$$

Alternatively, it is the set of $N \times N$ random matrices whose entries are all i.i.d. complex normals (Re, Im i.i.d. $N(0,1)$).

The Ginibre Ensemble

- GinUE(N)
- circular
- \mathscr{R}-diagonal
- Properties
- Haagerup Ineq.
- *-Pairings
- Resolvent
- Blow-Up
- Moments
- References

The Ginibre ensemble $\operatorname{Gin} U E(N)$ is the space $\operatorname{Mat}_{N}(\mathbb{C})$ equipped with the probability measure

$$
\alpha_{N} e^{-X^{*} X} d X
$$

Alternatively, it is the set of $N \times N$ random matrices whose entries are all i.i.d. complex normals (Re,Im i.i.d. $N(0,1)$). Renormalize it by $1 / \sqrt{2 N}$, and...

Matlab code:
$\mathrm{X}=\mathrm{randn}(4000)$;
$\mathrm{Y}=\mathrm{randn}$ (4000);
C=(X+iY)/sqrt(8000);
$\mathrm{E}=\mathrm{eig}(\mathrm{C})$;
plot(E,'b.');

The Ginibre Ensemble

- GinU $E(N)$
- circular
- \mathscr{R}-diagonal
- Properties
- Haagerup Ineq.
- *-Pairings
- Resolvent
- Blow-Up
- Moments
- References

The Ginibre ensemble $\operatorname{Gin} U E(N)$ is the space $\operatorname{Mat}_{N}(\mathbb{C})$ equipped with the probability measure

$$
\alpha_{N} e^{-X^{*} X} d X
$$

Alternatively, it is the set of $N \times N$ random matrices whose entries are all i.i.d. complex normals (Re,Im i.i.d. $N(0,1)$). Renormalize it by $1 / \sqrt{2 N}$, and...

Matlab code:
$\mathrm{X}=\mathrm{randn}(4000)$;
$\mathrm{Y}=\mathrm{randn}$ (4000);
C=(X+iY)/sqrt(8000);
$\mathrm{E}=\mathrm{eig}(\mathrm{C})$;
plot(E,'b.');

Voiculescu's Circular Operator

- GinUE(N)
- circular
- \mathscr{R}-diagonal
- Properties
- Haagerup Ineq.
- *-Pairings
- Resolvent
- Blow-Up
- Moments
- References

The circular operator c is the limit (in the sense of free probability) of the renormalized $\operatorname{GinU} E(N)$ as $N \rightarrow \infty$.
It can also be realized as $c=\frac{1}{\sqrt{2}}\left(s_{1}+i s_{2}\right)$, where s_{1}, s_{2} are free semicircular operators.

Voiculescu's Circular Operator

- GinUE(N)
- circular
- \mathscr{R}-diagonal
- Properties
- Haagerup Ineq.
- *-Pairings
- Resolvent
- Blow-Up
- Moments
- References

The circular operator c is the limit (in the sense of free probability) of the renormalized $G i n U E(N)$ as $N \rightarrow \infty$.

It can also be realized as $c=\frac{1}{\sqrt{2}}\left(s_{1}+i s_{2}\right)$, where s_{1}, s_{2} are free semicircular operators.

It is my favourite operator.

Voiculescu's Circular Operator

- GinUE(N)
- circular
- \mathscr{R}-diagonal
- Properties
- Haagerup Ineq.
- *-Pairings
- Resolvent
- Blow-Up
- Moments
- References

The circular operator c is the limit (in the sense of free probability) of the renormalized $G i n U E(N)$ as $N \rightarrow \infty$.
It can also be realized as $c=\frac{1}{\sqrt{2}}\left(s_{1}+i s_{2}\right)$, where s_{1}, s_{2} are free semicircular operators.

It is my favourite operator.
From a combinatorial standpoint, it is characterized by its extremely simple free cumulants: among all cumulants in c, c^{*}, the only non-zero ones are

$$
\kappa_{2}\left[c, c^{*}\right]=\kappa_{2}\left[c^{*}, c\right]=1
$$

Voiculescu's Circular Operator

- GinUE(N)
- circular
- \mathscr{R}-diagonal
- Properties
- Haagerup Ineq.
- *-Pairings
- Resolvent
- Blow-Up
- Moments
- References

The circular operator c is the limit (in the sense of free probability) of the renormalized $G i n U E(N)$ as $N \rightarrow \infty$.

It can also be realized as $c=\frac{1}{\sqrt{2}}\left(s_{1}+i s_{2}\right)$, where s_{1}, s_{2} are free semicircular operators.

It is my favourite operator.
From a combinatorial standpoint, it is characterized by its extremely simple free cumulants: among all cumulants in c, c^{*}, the only non-zero ones are

$$
\kappa_{2}\left[c, c^{*}\right]=\kappa_{2}\left[c^{*}, c\right]=1
$$

Quick advertisement: pick up Lectures on the Combinatorics of Free Probability by A. Nica and R. Speicher for everything you need to know about free cumulants.

\mathscr{R}-Diagonal Operators

- GinUE(N)
- circular
- \mathscr{R}-diagonal
- Properties
- Haagerup Ineq.
- *-Pairings
- Resolvent
- Blow-Up
- Moments
- References

Let u be a Haar unitary operator (renormalized limit of Haar unitary ensemble). As Jamie Mingo showed us on Monday, the only non-zero free cumulants of u, u^{*} are of the form

$$
\kappa_{2 n}\left[u, u^{*}, \ldots, u, u^{*}\right]=\kappa_{2 n}\left[u^{*}, u, \ldots, u^{*}, u\right]=(-1)^{n} C_{n-1}
$$

\mathscr{R}-Diagonal Operators

- GinUE(N)
- circular
- \mathscr{R}-diagonal
- Properties
- Haagerup Ineq.
- *-Pairings
- Resolvent
- Blow-Up
- Moments
- References

Let u be a Haar unitary operator (renormalized limit of Haar unitary ensemble). As Jamie Mingo showed us on Monday, the only non-zero free cumulants of u, u^{*} are of the form

$$
\kappa_{2 n}\left[u, u^{*}, \ldots, u, u^{*}\right]=\kappa_{2 n}\left[u^{*}, u, \ldots, u^{*}, u\right]=(-1)^{n} C_{n-1}
$$

Definition. a is \mathscr{R}-diagonal if its only non-zero free cumulants are of the forms

$$
\kappa_{2 n}\left[a, a^{*}, \ldots, a, a^{*}\right] \quad \kappa_{2 n}\left[a^{*}, a, \ldots, a^{*}, a\right] .
$$

Alternate characterization. a is \mathscr{R}-diagonal if, given u Haar unitary $*$-free from a,

$$
u a \sim a
$$

Properties of \mathscr{R}-Diagonal Operators

- GinUE(N)
- circular
- \mathscr{R}-diagonal
- Properties
- Haagerup Ineq.
- *-Pairings
- Resolvent
- Blow-Up
- Moments
- References
- Matrix models: ensembles of the form $\alpha_{N} e^{-V\left(X^{*} X\right)} d X$.
- If a, b are \mathscr{R}-diagonal and $*$-free, then $a+b$ and a^{n} are \mathscr{R}-diagonal; if x is anything $*$-free from $a, a x$ is \mathscr{R}-diagonal.
- Never normal except scalar multiples of Haar unitaries.
- Brown measure of a can be computed explicitly from the \mathscr{S}-transform of $a^{*} a$; rotationally-invariant, analytic density.
- Have continuous families of invariant subspaces.
- Maximize free entropy $\left(\chi\right.$ and $\left.\chi^{*}\right)$ under distribution constraints.
- Satisfy a strong Haagerup inequality.

Strong Haagerup Inequality

- GinUE(N)
- circular
- \mathscr{R}-diagonal
- Properties
- Haagerup Ineq.
- *-Pairings
- Resolvent
- Blow-Up
- Moments
- References

Theorem. Let a_{1}, \ldots, a_{d} be $*$-free \mathscr{R}-diagonal operators. If T is spanned by words of length n in a_{1}, \ldots, a_{d} (and not $a_{1}^{*}, \ldots, a_{d}^{*}$), then

$$
\|T\| \leq \alpha \sqrt{n}\|T\|_{2}
$$

where α is a constant depending on $\sup \left(\left\|a_{j}\right\| /\left\|a_{j}\right\|_{2}\right)$.

Strong Haagerup Inequality

- GinUE(N)
- circular
- \mathscr{R}-diagonal
- Properties
- Haagerup Ineq.
- *-Pairings
- Resolvent
- Blow-Up
- Moments
- References

Theorem. Let a_{1}, \ldots, a_{d} be $*$-free \mathscr{R}-diagonal operators. If T is spanned by words of length n in a_{1}, \ldots, a_{d} (and not $a_{1}^{*}, \ldots, a_{d}^{*}$), then

$$
\|T\| \leq \alpha \sqrt{n}\|T\|_{2}
$$

where α is a constant depending on $\sup \left(\left\|a_{j}\right\| /\left\|a_{j}\right\|_{2}\right)$.
E.g. for Haar unitaries u_{1}, \ldots, u_{d}, this is a statement about the free group: if $f: \mathbb{F}_{d} \rightarrow \mathbb{C}$ is supported on words of length n in the generators (and not their inverses), then

$$
\|f\|_{*} \leq \sqrt{e} \sqrt{n+1}\|f\|_{2}
$$

(If the inverses are included, the constant is $(n+1)$; this is the classical Haagerup inequality.)

Non-Crossing $*$-Pairings

E.g. with $n=3, r=4$:
$u_{1} \quad u_{5} \quad u_{2} \quad u_{2}^{-1} u_{3}^{-1} u_{3}^{-1} u_{3} \quad u_{2} \quad u_{1} \quad u_{1}^{-1} u_{2}^{-1} u_{1}^{-1} u_{1} \quad u_{3} \quad u_{3} \quad u_{4}^{-1} u_{5}^{-1} u_{4}^{-1} u_{4} \quad u_{5} \quad u_{4} \quad u_{3}^{-1} u_{5}^{-1} u_{1}^{-1}$

Non-Crossing $*$-Pairings

E.g. with $n=3, r=4$:

Non-Crossing $*$-Pairings

E.g. with $n=3, r=4$:
$u_{1} u_{5} \quad u_{2} u_{2}^{-1} u_{3}^{-1} u_{3}^{-1} u_{3} \quad u_{2} \quad u_{1} u_{1}^{-1} u_{2}^{-1} u_{1}^{-1} u_{1} \quad u_{3} \quad u_{3} \quad u_{4}^{-1} u_{5}^{-1} u_{4}^{-1} u_{4} u_{5} \quad u_{4} \quad u_{3}^{-1} u_{5}^{-1} u_{1}^{-1}$

Non-Crossing $*$-Pairings

E.g. with $n=3, r=4$:

Non-Crossing $*$-Pairings

E.g. with $n=3, r=4$:

We get a non-crossing pairing π.

Non-Crossing $*$-Pairings

E.g. with $n=3, r=4$:

We get a non-crossing pairing π. More precisely,

- π is non-crossing
- π matches 1 s to $* \mathrm{~s}$ in the string $\underbrace{1 \cdots 1}_{n} \underbrace{* \cdots *}_{n} \cdots \underbrace{1 \cdots 1}_{n} \underbrace{* \cdots *}_{n}$

Non-Crossing $*$-Pairings

E.g. with $n=3, r=4$:

We get a non-crossing pairing π. More precisely,

- π is non-crossing
- π matches 1 s to $* \mathrm{~s}$ in the string $\underbrace{1 \cdots 1}_{n} \underbrace{* \cdots *}_{n} \cdots \underbrace{1 \cdots 1}_{n} \underbrace{* \cdots *}_{n}$

The set of such *-pairings is counted by the Fuss-Catalan numbers

$$
C_{r}^{(n)}=\frac{1}{n r+1}\binom{(n+1) r}{r} \sim(\sqrt{e} \sqrt{n+1})^{2 r} .
$$

A Resolvent Upper Bound

- $\operatorname{Gin} U E(N)$
- circular
- \mathscr{R}-diagonal
- Properties
- Haagerup Ineq.
- *-Pairings
- Resolvent
- Blow-Up
- Moments
- References

For $a \mathscr{R}$-diagonal, consider the resolvent function

$$
\rho_{a}(\lambda)=\frac{1}{\lambda-a} \quad \lambda \notin \operatorname{spec} a
$$

A Resolvent Upper Bound

- GinUE(N)
- circular
- \mathscr{R}-diagonal
- Properties
- Haagerup Ineq.
- *-Pairings
- Resolvent
- Blow-Up
- Moments
- References

For $a \mathscr{R}$-diagonal, consider the resolvent function

$$
\rho_{a}(\lambda)=\frac{1}{\lambda-a} \quad \lambda \notin \operatorname{spec} a
$$

Write this as a geometric series

$$
\rho_{a}(1 / \lambda)=\sum \lambda^{n+1} a^{n}
$$

Apply the strong Haagerup inequality term-by-term, use the Cauchy-Schwarz inequality, and arrive at

Proposition. There is a constant $\alpha(a)>0$ so that, for $1<\lambda<2$,

$$
\left\|\rho_{a}(\lambda)\right\| \leq \frac{\alpha(a)}{(\lambda-1)^{3 / 2}}
$$

A Resolvent Upper Bound

- GinUE(N)
- circular
- \mathscr{R}-diagonal
- Properties
- Haagerup Ineq.
- *-Pairings
- Resolvent
- Blow-Up
- Moments
- References

For $a \mathscr{R}$-diagonal, consider the resolvent function

$$
\rho_{a}(\lambda)=\frac{1}{\lambda-a} \quad \lambda \notin \operatorname{spec} a
$$

Write this as a geometric series

$$
\rho_{a}(1 / \lambda)=\sum \lambda^{n+1} a^{n}
$$

Apply the strong Haagerup inequality term-by-term, use the Cauchy-Schwarz inequality, and arrive at

Proposition. There is a constant $\alpha(a)>0$ so that, for $1<\lambda<2$,

$$
\left\|\rho_{a}(\lambda)\right\| \leq \frac{\alpha(a)}{(\lambda-1)^{3 / 2}}
$$

Question. Is this optimal?

Answer = YES

- GinUE(N)
- circular
- \mathscr{R}-diagonal
- Properties
- Haagerup Ineq.
- *-Pairings
- Resolvent
- Blow-Up
- Moments
- References

Theorem. Let a be \mathscr{R}-diagonal, and suppose that $\|a\|_{2}=1$ and $\|a\|_{4}>1$ (i.e. a is not Haar unitary). Then

$$
\left\|\rho_{a}(\lambda)\right\| \sim \sqrt{\frac{27}{32}} v(a) \frac{1}{(\lambda-1)^{3 / 2}},
$$

where $v(a)=\sqrt{\|a\|_{4}^{4}-1}$.

Answer = YES

- GinU $E(N)$
- circular
- \mathscr{R}-diagonal
- Properties
- Haagerup Ineq.
- *-Pairings
- Resolvent
- Blow-Up
- Moments
- References

Theorem. Let a be \mathscr{R}-diagonal, and suppose that $\|a\|_{2}=1$ and $\|a\|_{4}>1$ (i.e. a is not Haar unitary). Then

$$
\left\|\rho_{a}(\lambda)\right\| \sim \sqrt{\frac{27}{32}} v(a) \frac{1}{(\lambda-1)^{3 / 2}}
$$

where $v(a)=\sqrt{\|a\|_{4}^{4}-1}$. The proof uses both the combinatorics of planar diagrams, and complex analytic methods like those discussed by Hari Bercovici on Monday.

Key idea: the spectral radius of $\rho_{a}(\lambda)=(\lambda-a)^{-1}$ is the infimum of the spectrum of $|\lambda-a|$.

Answer = YES

- GinU $E(N)$
- circular
- \mathscr{R}-diagonal
- Properties
- Haagerup Ineq.
- *-Pairings
- Resolvent
- Blow-Up
- Moments
- References

Theorem. Let a be \mathscr{R}-diagonal, and suppose that $\|a\|_{2}=1$ and $\|a\|_{4}>1$ (i.e. a is not Haar unitary). Then

$$
\left\|\rho_{a}(\lambda)\right\| \sim \sqrt{\frac{27}{32}} v(a) \frac{1}{(\lambda-1)^{3 / 2}}
$$

where $v(a)=\sqrt{\|a\|_{4}^{4}-1}$. The proof uses both the combinatorics of planar diagrams, and complex analytic methods like those discussed by Hari Bercovici on Monday.

Key idea: the spectral radius of $\rho_{a}(\lambda)=(\lambda-a)^{-1}$ is the infimum of the spectrum of $|\lambda-a|$.

Therefore need to calculate (or estimate) $\mathscr{R}_{|\lambda-a|}$.

Answer = YES

- GinUE(N)
- circular
- \mathscr{R}-diagonal
- Properties
- Haagerup Ineq.
- *-Pairings
- Resolvent
- Blow-Up
- Moments
- References

Theorem. Let a be \mathscr{R}-diagonal, and suppose that $\|a\|_{2}=1$ and $\|a\|_{4}>1$ (i.e. a is not Haar unitary). Then

$$
\left\|\rho_{a}(\lambda)\right\| \sim \sqrt{\frac{27}{32}} v(a) \frac{1}{(\lambda-1)^{3 / 2}},
$$

where $v(a)=\sqrt{\|a\|_{4}^{4}-1}$. The proof uses both the combinatorics of planar diagrams, and complex analytic methods like those discussed by Hari Bercovici on Monday.

Key idea: the spectral radius of $\rho_{a}(\lambda)=(\lambda-a)^{-1}$ is the infimum of the spectrum of $|\lambda-a|$.

Therefore need to calculate (or estimate) $\mathscr{R}_{|\lambda-a|}$. The trick is to symmetrize.

Answer = YES

- GinUE(N)
- circular
- \mathscr{R}-diagonal
- Properties
- Haagerup Ineq.
- *-Pairings
- Resolvent
- Blow-Up
- Moments
- References

Theorem. Let a be \mathscr{R}-diagonal, and suppose that $\|a\|_{2}=1$ and $\|a\|_{4}>1$ (i.e. a is not Haar unitary). Then

$$
\left\|\rho_{a}(\lambda)\right\| \sim \sqrt{\frac{27}{32}} v(a) \frac{1}{(\lambda-1)^{3 / 2}},
$$

where $v(a)=\sqrt{\|a\|_{4}^{4}-1}$. The proof uses both the combinatorics of planar diagrams, and complex analytic methods like those discussed by Hari Bercovici on Monday.

Key idea: the spectral radius of $\rho_{a}(\lambda)=(\lambda-a)^{-1}$ is the infimum of the spectrum of $|\lambda-a|$.

Therefore need to calculate (or estimate) $\mathscr{R}_{|\lambda-a|}$. The trick is to symmetrize.
E.g.

$$
\mathscr{R}_{|\lambda-c|^{2}}(z)=\frac{1}{1-z}+\frac{\lambda^{2}}{(1-z)^{2}} .
$$

Related Techniques: Negative Moments

- GinUE(N)
- circular
- \mathscr{R}-diagonal
- Properties
- Haagerup Ineq.
- *-Pairings
- Resolvent
- Blow-Up
- Moments
- References

The same techniques allow us to calculate (to leading order, at least) the negative moments of μ_{λ}.

Theorem. For $\lambda \searrow 1$ and $k \geq 0$,

$$
\int t^{-2 k-2} d \mu_{\lambda}(t) \sim C_{k}^{(2)} \frac{v(a)^{k}}{\left(\lambda^{2}-1\right)^{3 k+1}}, \quad \lambda \searrow 1
$$

Related Techniques: Negative Moments

- GinUE(N)
- circular
- \mathscr{R}-diagonal
- Properties
- Haagerup Ineq.
- *-Pairings
- Resolvent
- Blow-Up
- Moments
- References

The same techniques allow us to calculate (to leading order, at least) the negative moments of μ_{λ}.

Theorem. For $\lambda \searrow 1$ and $k \geq 0$,

Related Techniques: Negative Moments

- GinUE(N)
- circular
- \mathscr{R}-diagonal
- Properties
- Haagerup Ineq.
- *-Pairings
- Resolvent
- Blow-Up
- Moments
- References

The same techniques allow us to calculate (to leading order, at least) the negative moments of μ_{λ}.

Theorem. For $\lambda \searrow 1$ and $k \geq 0$,

$$
\int t^{-2 k-2} d \mu_{\lambda}(t) \sim C_{k}^{(2)} \frac{v(a)^{k}}{\left(\lambda^{2}-1\right)^{3 k+1}}, \quad \lambda \searrow 1
$$

Fuss-Catalan number. In terms of complex analytic techniques, shows up in the Lagrange inversion formula for a cubic polynomial.

Related Techniques: Negative Moments

- GinUE(N)
- circular
- \mathscr{R}-diagonal
- Properties
- Haagerup Ineq.
- *-Pairings
- Resolvent
- Blow-Up
- Moments
- References

The same techniques allow us to calculate (to leading order, at least) the negative moments of μ_{λ}.

Theorem. For $\lambda \searrow 1$ and $k \geq 0$,

$$
\int t^{-2 k-2} d \mu_{\lambda}(t) \sim C_{k}^{(2)} \frac{v(a)^{k}}{\left(\lambda^{2}-1\right)^{3 k+1}}, \quad \lambda \searrow 1
$$

Fuss-Catalan number. In terms of complex analytic techniques, shows up in the Lagrange inversion formula for a cubic polynomial.

But we have a much nicer explanation for its appearance: pairing structure diagrams!

Related Techniques: Negative Moments

- GinUE(N)
- circular
- \mathscr{R}-diagonal
- Properties
- Haagerup Ineq.
- *-Pairings
- Resolvent
- Blow-Up
- Moments
- References

The same techniques allow us to calculate (to leading order, at least) the negative moments of μ_{λ}.

Theorem. For $\lambda \searrow 1$ and $k \geq 0$,

$$
\int t^{-2 k-2} d \mu_{\lambda}(t) \sim C_{k}^{(2)} \frac{v(a)^{k}}{\left(\lambda^{2}-1\right)^{3 k+1}}, \quad \lambda \searrow 1
$$

Fuss-Catalan number. In terms of complex analytic techniques, shows up in the Lagrange inversion formula for a cubic polynomial.

But we have a much nicer explanation for its appearance: pairing structure diagrams!

Let's look at the circular case.

References

- GinU $E(N)$
- circular
- \mathscr{R}-diagonal
- Properties
- Haagerup Ineq.
- *-Pairings
- Resolvent
- Blow-Up
- Moments
- References
- Kemp, T.; Speicher, R.: Strong Haagerup inequalities for free \mathscr{R}-diagonal elements. J. Funct. Anal. 251 (2007) 141-173.
- Kemp, T.: \mathscr{R}-diagonal dilation semigroups. Preprint.
- Haagerup, U.; Kemp, T.; Speicher, R.: Resolvents and norms for \mathscr{R}-diagonal operators. $(1-\epsilon)$ Preprint.

