WARNING

THIS IS NOT A TALK ABOUT FREE PROBABILTY THEORY

WARNING

RIGOR LEVEL: ∞⁻¹

Synchronous MMSE SIR with interference: Diagrams & Replicas

Aris Moustakas (Univ. Athens, Greece)

Collaborators: M. Debbah (Supelec, France) R. Kumar, G. Caire (USC, USA)

Introduction

- Why random matrices in communications? •
 - Multi-antenna channels $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{z}$
 - Code matrices
 - Random i i d
 - Scrambling codes (+-+-...)
 - Approximated by random Gaussian matrices
 - Orthogonal
 - Hadamard-Walsh codes [++++], [++--], [+-+-], [+--+]
 - Fourier transform matrices
 - Approximated by unitary Haar matrices
- Two standard functions of matrices •
 - $I = Tr \log_2 \left[\mathbf{I} + \rho \mathbf{H} \mathbf{H}^{\dagger} \right]$ Information Capacity

$$- SINR = \rho \mathbf{w}^{\dagger} \mathbf{H}^{\dagger} \left[\mathbf{I} + \rho \mathbf{H} \mathbf{U} \mathbf{U}^{\dagger} \mathbf{H}^{\dagger} \right]^{-1} \mathbf{H} \mathbf{w}$$

SINR linear MMSE

Introduction

- Important Statistics of random quantities
 - Mean
 - Variance
 - Higher cumulant moments (vanish for large matrix sizes = CLT)

Methods:

- Diagrammatic Method
 - Important method in high-energy physics since 1930's
 - Applied to mesoscopic systems (1980's)
 - Applies mostly to Gaussian & Unitary matrices
 - Also matrices "*close*" to these
 - Non-hermitian matrices
 - Expand resolvent (Stieljes transform) in powers of random matrix and calculate average and then resum (!)
 - For large N, only a certain type of diagrams survive (planar approximation)
 - Applications: Calculation of mean and variance of resolvent
 - Similar to free probability methods

Application: MMSE SINR for synchronous transmission

• Channel Model:

 $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{H}'\mathbf{x}' + \mathbf{z}$

- N time-slots, 2 bases with K & K' users
- Each user gets a code to transmit

 $\mathbf{x} = \sum_{k=1}^{K} \mathbf{w}_k d_k$

- Synchronous transmission (downlink):
 - Matrix $\mathbf{U} = [\mathbf{w}_1 \, \mathbf{w}_2 \dots \mathbf{w}_K \dots \mathbf{w}_N]$ is unitary $\mathbf{U}^\dagger \mathbf{U} = \mathbf{U} \mathbf{U}^\dagger = \mathbf{I}_N$
 - In reality: *U* is a Hadamard-Walsh matrix
 - For OFDMA systems \boldsymbol{U} is the Fourier transform basis matrix
 - Approximate this with Haar-distributed unitary matrices
- Alternative (uplink): Asynchronous transmission:
 - Elements of U are i.i.d. $\frac{\pm 1}{\sqrt{N}}$
 - Approximate this by Gaussian i.i.d. matrix
- Assume U, U' independent

Application: MMSE SINR for synchronous transmission

• Channel Model:

 $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{H}'\mathbf{x}' + \mathbf{z}$

- H, H': Channel matrices
 - Diagonal with independent coefficients:
 - Fast fading (time-variability)
 - Independent frequency channels
 - Toeplitz form
 - Delayed paths
- z: receiver thermal noise (white)

Application: MMSE SINR for synchronous transmission

- Optimal linear receiver for user 1(several caveats): ۲
 - Multiply y with optimal vector

$$\mathbf{g} = \mathbf{w}_1^{\dagger} \mathbf{H}^{\dagger} \left[\sigma^2 \mathbf{I}_N + \mathbf{H} \mathbf{U} \mathbf{J} \mathbf{U}^{\dagger} \mathbf{H}^{\dagger} + \mathbf{H}' \mathbf{U}' \mathbf{J}' \mathbf{U}'^{\dagger} \mathbf{H}'^{\dagger} \right]^{-1}$$

- J, J' are input power covariance matrices
- Resulting SINR

$$\beta = \frac{\eta}{1-\eta}$$
$$\eta = \mathbf{w}_1^{\dagger} \mathbf{H}^{\dagger} \left[\sigma^2 \mathbf{I}_N + \mathbf{H} \mathbf{U} \mathbf{J} \mathbf{U}^{\dagger} \mathbf{H}^{\dagger} + \mathbf{H}' \mathbf{U}' \mathbf{J}' \mathbf{U}'^{\dagger} \mathbf{H}'^{\dagger} \right]^{-1} \mathbf{H} \mathbf{w}_1$$

- Aim: Calculate asymptotic properties of β (i.e. evaluate its mean) •
- Compare with effective interference ullet

 - Averaged over codes $\mathbf{H}'\mathbf{U}'\mathbf{J}'\mathbf{U}'^{\dagger}\mathbf{H}'^{\dagger} = \mathbf{H}'\mathbf{H}'^{\dagger}Tr\mathbf{J}'/N$ Averaged over time & codes $\mathbf{H}'\mathbf{U}'\mathbf{J}'\mathbf{U}'^{\dagger}\mathbf{H}'^{\dagger} = E\left[\mathbf{H}'\mathbf{H}'^{\dagger}\right]Tr\mathbf{J}'/N$

• Start with simple problem:

$$g = E\left[tr\left[\mathbf{I} - \mathbf{A}\mathbf{U}\mathbf{B}\mathbf{U}^{\dagger}\right]^{-1}\mathbf{A}\right] = \sum_{n=0}^{\infty} trE\left[\left(\mathbf{A}\mathbf{U}\mathbf{B}\mathbf{U}^{\dagger}\right)^{n}\mathbf{A}\right]$$

$$- tr[.] = Tr[.]/N$$

- Represent each matrix in the expansion:
 - U_{ij} as two dashed lines with two external lines U_{ij} U_{ij}^* U_{ij}^*
 - Matrices A, B as lines

$$\mathbf{G}_0 = \mathbf{A} \qquad \xrightarrow{\mathbf{i} \qquad \mathbf{j}} \qquad g_0 = tr \mathbf{G}_0$$
$$\mathbf{F}_0 = \mathbf{B} \qquad \longleftarrow \qquad f_0 = tr \mathbf{F}_0$$

• Trace corresponds connecting solid lines

$$tr\left(\mathbf{AUBU}^{\dagger}
ight)^{3}$$

- Averaging over *U*: Connect dashed lines in all possible ways EXACT
 - Gives 1/N for each U, U* pair $E\left[U_{ji}^{*}U_{kl}\right]$ (Brouwer –Beenakker)

ii.

1.1

1.1

H

(Argar

Zee)

Diagrammatic Approach

- In large N limit only planar diagrams survive • All crossed (non-planar) diagrams are subleading in N
- This allows us to write the trace in disconnected parts ۲
 - no dashed is allowed to escape (not even the other U's)

- Self-energy = "R-transform"
- Leading terms in Weingarten function of each power of U's

Differences between Gaussian & NonGaussian

Resum terms to get final result $g = tr \frac{\mathbf{A}}{\mathbf{I} - \mathbf{A} f m_u} f = tr \frac{\mathbf{B}}{\mathbf{I} - \mathbf{B} g m_u}$ •

Functional form of m encodes statistics of U

• Generalize to current problem with one interferer

$$g_{i} = tr \left[\mathbf{H_{i}H_{i}}^{\dagger} \left(\mathbf{I} + \mathbf{H_{1}H_{1}}^{\dagger} f_{1}\bar{m}_{1u} + \mathbf{H_{2}H_{2}}^{\dagger} f_{2}\bar{m}_{2u} \right)^{-1} \right]$$

$$f_{i} = tr \frac{\mathbf{J}_{i}^{\dagger}}{\mathbf{I} + \mathbf{J}_{i}^{\dagger} g_{i}\bar{m}_{iu}} \quad \bar{m}_{iu} = \frac{1 - \sqrt{1 - 4f_{i}g_{i}}}{2f_{i}g_{i}} \qquad i = 1, 2$$

$$\frac{\beta}{3 + 1} = \eta = \frac{Nf_{1}g_{1}\bar{m}_{1u}}{K}$$

- Note: m_1 does not have to be the same as m_2 (e.g. = 1)
- "In principle", above result cannot be obtained using free probability (?)
 Depends on relative eigenvector space of H₁, H₂, not only on their eigenvalues

$$r(z) = trE \left[\left(z - \mathbf{H_1} \mathbf{U_1} \mathbf{J_1} \mathbf{U_1^{\dagger}} \mathbf{H_1^{\dagger}} - \mathbf{H_2} \mathbf{U_2} \mathbf{J_2} \mathbf{U_2^{\dagger}} \mathbf{H_2^{\dagger}} \right)^{-1} \right]$$
$$= tr \left[\left(z - \mathbf{H_1} \mathbf{H_1^{\dagger}} f_1 m_{1u} - \mathbf{H_2} \mathbf{H_2^{\dagger}} f_2 m_{2u} \right)^{-1} \right]$$

- $\alpha = K_1/N = K_2/N$ $\rho = 1/\sigma^2$
- Asymptotic theory: introduce fast fading on each channel

- $\alpha = K_1/N = K_2/N$ $\rho = 1/\sigma^2$
- Asymptotic theory: introduce fast fading on each channel

• $\alpha = K_1/N = K_2/N$ $\rho = 1/\sigma^2$

• Asymptotic theory converges Hadamard=good approximation

Aris Moustakas, University of Athens

- $\alpha = K_1/N = K_2/N$ $\rho = 1/\sigma^2$
- Gaussian interference

MMSE SINR vs loading; $\rho_1{=}\rho_2{=}20\text{dB};$ interference loading $\alpha_2{=}0.6$ 18 Unitary Interference Gaussian Interference 16 Unspread Interference Blue line **Effective Noise** 14 "interpolates" between green 12 and red with $\alpha 2$ $(\alpha 2=1)$ Interference SINR (dB) 10 cancels unitary matrices – $\alpha 2 \ll 1$ 8 Unitary looks Gaussian 6 4 2 0 0.2 0.3 0.5 0.6 0.7 0.8 0.9 0.1 0.4 0 α

Second Order Moments using Diagrammatics

- Calculate second order statistics of eigenvalues (=differentiate below) $v_{12}(z) = E \left[Tr \log \left[z\mathbf{I} - \mathbf{A_1}\mathbf{U}\mathbf{B_1}\mathbf{U}^{\dagger} \right] Tr \log \left[z\mathbf{I} - \mathbf{A_2}\mathbf{U}\mathbf{B_2}\mathbf{U}^{\dagger} \right] \right]_c$
 - Two traces two lines (closed)
 - Apply same principles (more diagrams)
 - Intra-circle
 - Cross-circle
 - Given x-circle connections
 - Can sum over all possible intra-circle ones
 - Then can sum over all cross-circle positions
 - Thus get from Go -> G and Fo->F
 - Variance is O(1)

- The x-circle connections characterized by their neighbors (gf, fg, ff, gg)
- Thus we are left to just sum over "effective" quantities Γ, F, G
- By symmetry $\Gamma_{fg} = \Gamma_{gf}$
- Γ's involve same terms as mu but are broken into disjoint terms
 - Some go to $\Gamma_{\rm ff}$, some go to $\Gamma_{\rm gf}$
- If **H** is Gaussian $\Gamma_{gg} = \Gamma_{ff} = 0$

• After resumming we finally get

$$\begin{split} E[I_{1}I_{2}]_{c} &= E\left[Tr\log\left[z\mathbf{I} - \mathbf{A_{1}HB_{1}H^{\dagger}}\right]Tr\log\left[z\mathbf{I} - \mathbf{A_{2}HB_{2}H^{\dagger}}\right]\right]_{c} \\ &= -\log\left[(1 - \Gamma_{ff}t_{f})(1 - \Gamma_{gg}t_{g}) - \Gamma_{fg}^{2}t_{g}t_{f}\right] \\ t_{f} &= tr\left[\mathbf{F_{1}F_{2}}\right] \\ t_{g} &= tr\left[\mathbf{G_{1}G_{2}}\right] \\ f_{i} &= tr\mathbf{F_{i}} = E\left[tr\left[\mathbf{B}_{i}/(\mathbf{I} - \mathbf{B_{i}HA_{i}H^{\dagger}}/z)\right]\right] = tr\left[\frac{\mathbf{B}_{i}}{\mathbf{I} - \mathbf{B_{i}g_{i}m(f_{i}g_{i})}}\right] \\ g_{i} &= tr\mathbf{G_{i}} = E\left[tr\left[\mathbf{A}_{i}/(\mathbf{I}z - \mathbf{A_{i}H^{\dagger}B_{i}H})\right]\right] = tr\left[\frac{\mathbf{A}_{i}}{\mathbf{I}z - \mathbf{A_{i}f_{i}m(f_{i}g_{i})}}\right] \\ \Gamma_{ff}, \Gamma_{gg}, \Gamma_{fg} &= \mathcal{F}(\{f_{i}, g_{i}\}) \end{split}$$

22

Example: variance of MMSE SINR for synchronous downlink (no interference for simplicity)

- Variance for N= 128, SNR = 10
- Cell Loading α=K/N=0.5
- Channel matrix *H* with iid Gaussian elements of size xaxis*N
- Good agreement with theory

For channel matrix of Toeplitz form Hadamard behavior quite different

- Approach may be invalid due to lack of "randomization" of Haar eigenvalue matrix for channel
- Second order statistics no longer follow unitary asymptotic results !!!

Methods:

- Replicas
 - Originally applied to dirty magnetic systems (1970's)
 - Calculate moment generating function

$$g(\nu) = E\left[\left(\mathbf{I} + \rho \mathbf{H} \mathbf{H}^{\dagger}\right)^{\nu}\right]$$

- Replica trick: Calculate MGF for *integer* values of v
- Analytically continue for real values of *v*
- Technical Assumption: Replica Symmetry
 - Not always valid
 - Valid for random matrices with continuous symmetries (*H* complex Gaussian w/ SU(N) rotational symmetry)
- Applications: Calculation of mean, variance, higher order moments of trace, variance, higher moments of trlog (and hence of MMSE SINR)

Mutual Information distribution of MMSE SINR for MIMO Gaussian channels

- Need to calculate $E[\beta_i\beta_i]$ and then calculate MI $I = \sum \log(1 + \beta_n)$
- Outage probability well behaved down to small errors.
- For increasing N behavior better
- Better when N>M

 $n \equiv 1$

- Applied diagrammatic approach to calculate asymptotic mean and variance of MMSE SINR with/without interference
- Applications
 - MMSE SIR for synchronous channels with (a)synchronous interference
 - MMSE SIR for synchronous downlink channels
 - Works well for orthogonal, unitary matrices
 - Hadamard matrices do not fare well WHY?
 - MMSE SIR capacity for MIMO channels
 - Reasonable waterfall curves, even for large SNRs.
 - Crossover to bad behavior is function of SNR, N
- Open Questions
 - Spectrum of AUBU' + CUDU'?
 - Known only for Gaussian U (using replicas)

