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• Why random matrices in communications?
– Multi-antenna channels
– Code matrices

• Random i.i.d.
– Scrambling codes (+-+-….)
– Approximated by random Gaussian matrices

• Orthogonal 
– Hadamard-Walsh codes [++++], [++- -], [+ - + -], [+ - - +] 
– Fourier transform matrices
– Approximated by unitary Haar matrices

• Two standard functions of matrices
–

• Information Capacity
–

• SINR linear MMSE

I = Tr log2

h
I+ ρHH†

i
SINR = ρw†H†

h
I+ ρHUU†H†

i−1
Hw

y = Hx+ z



Introduction

5Aris Moustakas, University of Athens

• Important Statistics of random quantities 
– Mean
– Variance
– Higher cumulant moments (vanish for large matrix sizes = CLT) 

• Methods
– Free probability 

• Asymptotic freeness
– Canonical RMT

• Stieljes transforms
– Replicas

• Gaussian matrices (?)
– Diagrammatics (= Free probability??)

• Gaussian matrices
• Unitary matrices

– Other methods

Cons: 

• Non rigorous

• Non-general 
(Gaussian – Unitary)

Pros: 

• Back-of-the 
envelope

• Easy
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• Diagrammatic Method
– Important method in high-energy physics since 1930’s

• Applied to mesoscopic systems (1980’s)
– Applies mostly to Gaussian & Unitary matrices

• Also matrices “close” to these
• Non-hermitian matrices

– Expand resolvent (Stieljes transform) in powers of random matrix and 
calculate average and then resum (!)

– For large N, only a certain type of diagrams survive (planar approximation)
– Applications: Calculation of mean and variance of resolvent

– Similar to free probability methods
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• Channel Model:

– N time-slots, 2 bases with K & K’ users
– Each user gets a code to transmit

– Synchronous transmission (downlink): 
• Matrix is unitary 
• In reality: U is a Hadamard-Walsh matrix
• For OFDMA systems U is the Fourier transform basis matrix
• Approximate this with Haar-distributed unitary matrices

– Alternative (uplink): Asynchronous transmission:
• Elements of U are i.i.d. 
• Approximate this by Gaussian i.i.d. matrix 

– Assume U, U’ independent 

y = Hx+H0x0 + z

x =
PK

k=1wkdk

U = [w1w2 . . .wK . . .wN ] U†U = UU† =

±1√
N

IN
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• Channel Model:

– H, H’: Channel matrices
• Diagonal with independent coefficients:

– Fast fading (time-variability)
– Independent frequency channels

• Toeplitz form
– Delayed paths

– z: receiver thermal noise (white)

y = Hx+H0x0 + z
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• Optimal linear receiver for user 1(several caveats):
– Multiply y with optimal vector 

– J, J’ are input power covariance matrices
– Resulting SINR

• Aim: Calculate asymptotic properties of β (i.e. evaluate its mean)
• Compare with effective interference

– Averaged over codes
– Averaged over time & codes

g = w†
1H

†
h
σ2IN +HUJU

†H† +H0U0J0U0†H0†
i−1

η = w†
1H

†
h
σ2IN +HUJU

†H† +H0U0J0U0†H0†
i−1

Hw1

β = η
1−η

H0U0J0U0†H0† = E
h
H0H0†

i
TrJ0/N

H0U0J0U0†H0† = H0H0†TrJ0/N
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• Start with simple problem: 

– tr[.] = Tr[.]/N

i j

i j

g = E

·
tr
h
I−AUBU†

i−1
A

¸
=
P∞

n=0 trE
h³
AUBU†

´n
A
i

– Matrices A, B as lines

• Trace corresponds connecting solid lines

• Averaging over U: Connect dashed lines in all possible ways
– Gives 1/N for each U, U* pair

• Represent each matrix in the expansion: 
– Uij as two dashed lines with two external lines

EXACT 
APPROACH
(Brouwer –Beenakker)

(Argaman – Zee) 
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• In large N limit only planar diagrams survive
– All crossed (non-planar) diagrams 
are subleading in N

• This allows us to write the trace in disconnected parts
– no dashed is allowed to escape (not even the other U’s)

– where red blob represents all other terms  
• Self-energy = “R-transform”
• Leading terms in Weingarten function of each power of U’s

• Resum terms to get final result
– Functional form of m encodes statistics of U

• mg=1 for Gaussian U

g = tr A
I−Afmu

f = tr B
I−Bgmu

mu =

√
1+4fg−1
2fg

Differences 
between 
Gaussian & 
NonGaussian

Generating function 
of (2k)!/(k!2(2k-1))
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• Generalize to current problem with one interferer

gi = tr

·
HiHi

†
³
I+H1H1

†f1m̄1u +H2H2
†f2m̄2u

´−1¸
fi = tr

J†i
I+J†i gim̄iu

i = 1, 2m̄iu =
1−
√
1−4figi
2figi

β
β+1 = η = Nf1g1m̄1u

K

• Note: m1 does not have to be the same as m2 (e.g. = 1)

• “In principle”, above result cannot be obtained using free probability (?)
– Depends on relative eigenvector space of H1, H2 , not only on their 

eigenvalues

r(z) = trE

·³
z −H1U1J1U

†
1H

†
1 −H2U2J2U

†
2H

†
2

´−1¸
= tr

·³
z −H1H1

†f1m1u −H2H2
†f2m2u

´−1¸
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• α=Κ1/Ν=Κ2/Ν ρ=1/σ2

• Asymptotic theory: introduce fast fading on each channel 
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• α=Κ1/Ν=Κ2/Ν ρ=1/σ2

• Asymptotic theory: introduce fast fading on each channel 
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• α=Κ1/Ν=Κ2/Ν ρ=1/σ2

• Asymptotic theory converges Hadamard=good approximation
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• α=Κ1/Ν=Κ2/Ν ρ=1/σ2

• Gaussian interference
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• Calculate second order statistics of eigenvalues (=differentiate below)

• Two traces – two lines (closed)
• Apply same principles (more diagrams)

– Intra-circle
– Cross-circle
– Given x-circle connections 

• Can sum over all possible intra-circle ones
• Then can sum over all cross-circle positions
• Thus get from Go -> G and Fo->F

• Variance is O(1)

1

2
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• The x-circle connections characterized by 
their neighbors (gf, fg, ff, gg)

• Thus we are left to just sum over 
“effective” quantities Γ, F, G

• By symmetry Γfg = Γgf

• Γ’s involve same terms as mu but are 
broken into disjoint terms 
– Some go to Γff, some go to Γgf

• If H is Gaussian Γgg = Γff = 0

F

G

G

Γfg

Γgg

Γgf
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• After resumming we finally get

1
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Example: variance of MMSE SINR for synchronous downlink (no 
interference for simplicity)

• Variance for N= 128, 
SNR = 10

• Cell Loading 
α=Κ/Ν=0.5

• Channel matrix H with 
iid Gaussian elements of 
size xaxis*N

• Good agreement with 
theory
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• Approach may 
be invalid due to 
lack of 
“randomization” 
of Haar
eigenvalue
matrix for 
channel

• Second order 
statistics no 
longer follow 
unitary 
asymptotic 
results !!!

For channel matrix of Toeplitz form Hadamard behavior quite different
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• Replicas
– Originally applied to dirty magnetic systems (1970’s)
– Calculate moment generating function

– Replica trick: Calculate MGF for integer values of ν
– Analytically continue for real values of ν
– Technical Assumption: Replica Symmetry

• Not always valid
• Valid for random matrices with continuous symmetries (H complex Gaussian w/ 

SU(N) rotational symmetry)

– Applications: Calculation of mean, variance, higher order moments of trace, 
variance, higher moments of trlog (and hence of MMSE SINR)

g(ν) = E
h³
I+ ρHH†

´νi



Results

26Aris Moustakas, University of Athens

• Outage 
probability well 
behaved down to 
small errors.

• For increasing N 
behavior better

• Better when 
N>M

Mutual Information distribution of MMSE SINR for MIMO Gaussian channels
• Need to calculate E[βiβj] and then calculate MI  
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• Applied diagrammatic approach to calculate asymptotic mean and 
variance of MMSE SINR with/without interference

• Applications  
– MMSE SIR for synchronous channels with (a)synchronous interference

– MMSE SIR for synchronous downlink channels
• Works well for orthogonal, unitary matrices
• Hadamard matrices do not fare well WHY?

– MMSE SIR capacity for MIMO channels
• Reasonable waterfall curves, even for large SNRs. 
• Crossover to bad behavior is function of SNR, N

• Open Questions
– Spectrum of AUBU’ + CUDU’?

• Known only for Gaussian U (using replicas)
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