
For matrix A (p×p) with real eigenvalues, define FA, the empirical

distribution function of the eigenvalues of A, to be

FA(x) ≡ (1/p) · (number of eigenvalues of A ≤ x).

For and p.d.f. G the Stieltjes transform of G is defined as

mG(z) ≡
∫

1
λ− z

dG(λ), z ∈ C+ ≡ {z ∈ C : =z > 0}.

Inversion formula

G{[a, b]} = (1/π) lim
η→0+

∫ b

a

=mG(ξ + iη)dξ

(a, b continuity points of G).

Notice

mF A(z) = (1/p)tr (A− zI)−1.
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Theorem [S. (1995)]. Assume

a) For n = 1, 2, . . . Xn = (Xn
ij), n × N , Xn

ij ∈ C, i.d. for all n, i, j,

independent across i, j for each n, E|X1
1 1 − EX1

1 1|2 = 1.

b) N = N(n) with n/N → c > 0 as n →∞.

c) Tn n × n random Hermitian nonnegative definite, with FTn con-

verging almost surely in distribution to a p.d.f. H on [0,∞) as

n →∞.

d) Xn and Tn are independent.

Let T
1/2
n be the Hermitian nonnegative square root of Tn, and

let Bn = (1/N)T 1/2
n XnX∗

nT
1/2
n (obviously FBn = F (1/N)XnX∗

nTn).

Then, almost surely, FBn converges in distribution, as n →∞, to

a (nonrandom) p.d.f. F , whose Stieltjes transform m(z) (z ∈ C+)

satisfies

(∗) m =
∫

1
t(1− c− czm)− z

dH(t),

in the sense that, for each z ∈ C+, m = m(z) is the unique solution

to (∗) in {m ∈ C : − 1−c
z + cm ∈ C+}.
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We have

F (1/N)X∗TX = (1− n

N
)I[0,∞) +

n

N
F (1/N)XX∗T

a.s.−→ (1− c)I[0,∞) + cF ≡ F .

Notice mF and mF satisfy

1− c

cz
+

1
c
mF (z) = mF (z) =

∫
1

−zmF t− z
dH(t).

Therefore, m = mF solves

z = − 1
m

+ c

∫
t

1 + tm
dH(t).
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Facts on F:

1. The endpoints of the connected components (away from 0) of the

support of F are given by the extrema of

f(m) = − 1
m

+ c

∫
t

1 + tm
dH(t) m ∈ C

[Marčenko and Pastur (1967), S. and Choi (1995)].

2. F has a continuous density away from the origin given by

1
cπ

=m(x) 0 < x ∈ support of F

where

m(x) = lim
z∈C+→x

mF (z)

solves

x = − 1
m

+ c

∫
t

1 + tm
dH(t).

(S. and Choi 1995).

3. F ′ is analytic inside its support, and when H is discrete, has infinite

slopes at boundaries of its support [S. and Choi (1995)].

4. c and F uniquely determine H.

5. F
D−→ H as c → 0 (complements Bn

a.s.−→ Tn as N → ∞, n fixed).
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Tn = In =⇒ F = Fc, where, for 0 < c ≤ 1, F ′c(x) = fc(x) =

1
2πcx

√
(x− b1)(b2 − x) b1 < x < b2,

0 otherwise, where

b1 = (1−√c)2 and b2 = (1 +
√

c)2,

and for 1 < c < ∞,

Fc(x) = (1− (1/c))I[0,∞)(x) +
∫ x

b1

fc(t)dt.

Marčenko and Pastur (1967)

Grenander and S. (1977)
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Let, for any d > 0 and d.f. G, F d,G denote the limiting spectral

d.f. of (1/N)X∗TX corresponding to limiting ratio d and limiting

FTn G.

Theorem [Bai and S. (1998)]. Assume:

a) Xij , i, j = 1, 2, ... are i.i.d. random variables in C with EX11 = 0,

E|X11|2 = 1, and E|X11|4 < ∞.

b) N = N(n) with cn = n/N → c > 0 as n →∞.

c) For each n Tn is an n×n Hermitian nonnegative definite satisfying

Hn ≡ FTn
D−→ H, a p.d.f.

d) ‖Tn‖, the spectral norm of Tn is bounded in n.

e) Bn = (1/N)T 1/2
n XnX∗

nT
1/2
n , T

1/2
n any Hermitian square root of

Tn, Bn = (1/N)X∗
nTnXn, where Xn = (Xij), i = 1, 2, . . . , n,

j = 1, 2, . . . , N .

f) The interval [a, b] with a > 0 lies in an open interval outside the

support of F cn,Hn for all large n.

Then

P( no eigenvalue of Bn appears in [a, b] for all large n ) = 1.
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Theorem [Bai and S. (1999)]. Assume (a)–(f) of the previous the-

orem.

1) If c[1 − H(0)] > 1, then x0, the smallest value in the support of

F c,H , is positive, and with probability one λBn

N → x0 as n → ∞.

The number x0 is the maximum value of the function

z(m) = − 1
m

+ c

∫
t

1 + tm
dH(t)

for m ∈ R+.

2) If c[1−H(0)] ≤ 1, or c[1−H(0)] > 1 but [a, b] is not contained in

[0, x0] then mF c,H (b) < 0. Let for large n integer in ≥ 0 be such

that

λTn
in

> −1/mF c,H (b) and λTn
in+1 < −1/mF c,H (a)

(eigenvalues arranged in non-increasing order). Then

P(λBn
in

> b and λBn
in+1 < a for all large n ) = 1.
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Theorem (Baik and S. (2006)) Assume the conditions in Bai and

S. (1998). Suppose a fixed number of the eigenvalues of Tn are

different than 1, positive, and remain the same value for all n large.

Assume the ithn largest eigenvalue, λTn
in

, is one of these numbers, say

α. Then with probability one

λBn
in

→




α + cα
α−1 if |α − 1| >

√
c

(1 +
√

c)2 if 1 < α ≤ 1 +
√

c

(1 −√
c)2 if 1 −√

c ≤ α < 1.
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Theorem (Baik and S.). Assume when X1 1 is complex, EX2
1 1 = 0.

Suppose α > 0 is an eigenvalue of Tn with multiplicity k satisfying

(∗∗) |α− 1| > √
c

and eigenspace formed from k elements of the canonical basis set

Bn = {(1, 0, . . . , 0)∗, (0, 1, . . . , 0)∗, . . . , (0, . . . , 1)∗} in Rn. Let λi,

i = 1, . . . , k be the eigenvalues of Bn corresponding to α. Let

λn = α +
n

N

α

α− 1
.

Then
√

n(λi − λn) i = 1, . . . , k converge weakly to the eigenvalues

of a mean zero Gaussian k × k Hermitian matrix containing inde-

pendent random variables on and above the diagonal. The diagonal

entries have variance

= (E|x1|4 − 1− t/2)
α2((α− 1)2 − c)2

(α− 1)4
+ (t/2)

α2((α− 1)2 − c)
(α− 1)2

where t = 4 when X1 1 is real, t = 2 when X1 1 is complex. In

the complex case the real and imaginary parts of the off-diagonal

entries are i.i.d. The real part of the off-diagonal elements (in either

case) has variance

(t/4)
α2((α− 1)2 − c)

(α− 1)2
.

Moreover, the weak limit of eigenvalues corresponding to different

positive α’s satisfying (∗∗) with eigenvectors in Bn are independent.
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Theorem (Rao and S.). Assume the conditions in Bai and S. (1998),

and additionally

a) There are r positive eigenvalues of Tn all converging uniformly to

t′, a positive number. Denote by Ĥn the e.d.f. of the n − r other

eigenvalues of Tn.

b) There exists positive ta < tb contained in an interval (α, β) with

α > 0 which is outside the support of Ĥn for all large n, such that

for these n

n

N

∫
λ2

(λ − t)2
dĤn(λ) ≤ 1

for t = ta, tb.

c) t′ ∈ (ta, tb).

Suppose λTn
in

, . . . , λTn
in+r−1 are the eigenvalues stated in a). Then,

with probability one

lim
n→∞λBn

in
= · · · = lim

n→∞λBn
in+r−1 = z(−1/t′)

= t′
(

1 + c

∫
λ

t′ − λ
dH(λ)

)
.
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Application to array signal processing:

Consider m i.i.d. samples of an n dimensional Gaussian (real

or complex) distributed random vectors x1, . . . , xN , modeling the

recordings (N “snapshots”) taken from a bank of n antennas due

to signals emitting from an unknown number, k, of sources, and

through a noise-filled environment. It is typically assumed that x1

is mean zero, with covariance matrix R = Ψ + Σ, where Ψ is the

covariance matrix attributed to the signals and would be of rank

k, and Σ is the covariance of the additive noise, assumed to be of

full rank. Then the matrix

RΣ = Σ−1R = Σ−1Ψ + I

would have n − k eigenvalues, attributed to the noise, equal to 1,

the remaining k eigenvalues all strictly greater than 1.

14



When it is possible to sample the purely additive noise portion

along the antennas, say z1, . . . , zN ′ with N ′ > n, then one would

estimate RΣ with R̂
Σ̂
≡ Σ̂−1R̂, where

R̂ =
1
N

N∑
i=1

xix
∗
i and Σ̂ΣΣ =

1
N ′

N ′∑
j=1

zjz
∗
j ,

and seek to identify eigenvalues of R̂
Σ̂

which are near one, the

number of the remaining eigenvalues (presumably all greater than

these) would be an estimate of k, known in the literature as the

detection problem.
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Theorem (Rao and S.) Denote the eigenvalues of RΣ by λ1 ≥ λ2 >

. . . ≥ λk > λk+1 = . . . λn = 1. Let lj denote the j-th largest

eigenvalue of R̂
Σ̂
. Then as n, N(n), N ′(n) → ∞, cn = n/N → c >

0, c1
N ′ = n/N ′ → c1 < 1, with probability 1, lj converges to:

λj


1−c −c

−c1λj−λj +1+
√

c1
2λj

2−2c1λj
2−2c1λj +λj

2−2λj +1

2c1λj




if λj > τ(c, c1),

(
1 +

√
1 − (1 − c)(1 − c1)

1 − c1

)2

if λj ≤ τ(c, c1)

for j = 1, . . . , k. The threshold τ(c, c1) =

(c1
2+c1

√
c+c1−c1c −

√
c+c1−c1c −1)c−c1

2−2c1
√

c+c1−c1c −c1

((c1 − 1) c − c1) (1 − c1)
2 .
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Theorem (Dozier and S. (2007)). Assume

a) For n = 1, 2, . . . Xn = (Xn
ij), n × N , Xn

ij ∈ C, i.d. for all n, i, j,,

independent across i, j for each n, E|X1
1 1 − E1 1|2 = 1.

b) N = N(n) with n/N → c as n → ∞.

c) Rn is n × N , independent of Xn with F (1/N)RnR∗
n

D−→ H a.s.

Let, for σ > 0 Cn = (1/N)(Rn + σXn)(Rn + σXn)∗. Then, almost

surely, FCn converges in distribution, as n → ∞ to a non-random

p.d.f. F whose Stieltjes transform m(z) (z ∈ C+) uniquely satisfies

m =
∫

1
t

1 + σ2cm
− (1 + σ2cm)z + σ2(1 − c)

dH(t). (∗)
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Facts on F (Dozier and S. (2007)):

1. F has a contiuous density f away from the origin given by

f(x) =
1
π
=m(x) 0 < x ∈ support of F

where

m(x) = lim
x∈C+→x

m(z)

solves (∗) for z = x.

2. f is analytic inside its support, and when H is discrete, has infinite

slopes at boundaries of its support.

3. c and F uniquely determine H.

4. F (x) D−→ H(x−σ2) as c → 0 (complements Cn
a.s.−→ lim

N→∞
(1/N)RnR∗

n+

σ2In, n fixed ).
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5. Let b(z) = 1 + σ2cm(z) and w(z) = b2(z)z − b(z)σ2(1 − c). Then

(∗) can be rewritten as

1
σ2c

(
1 − 1

b

)
=

∫
dH(t)

t − w(z)
.

Any interval I ⊂ R outside the support of F implies w(I) ⊂ R is

outside the support of H. The inverse function

x(b) =
1
b2

m−1
H

(
1

σ2c

(
1 − 1

b

))
+

1
b
σ2(1 − c)

is increasing on b(I). Moreover, all intervals outside the support

of F correspond to intervals outside the support of H, resulting in

an inverse function.

Example: c = .1 σ2 = 1, H places mass .2, .4, .4 at 0,3,10, respec-

tively. The complement of the support consists of four intervals

I(i) = (−∞, 0), I(ii) = (0, 3), I(iii) = (3, 10), and I(iv) = (10,∞).
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Matrix used in MIMO (multiple-input-multiple-output) systems:

Dn = (1/N)A1/2
n XnBnX∗

nA1/2
n

where Xn is as above, An n × n, Bn is N × N , both Hermitian

nonnegative definite, independent of Xn, and A
1/2
n is the Hermitian

nonnegative square root of An.

Theorem (Zhang (2006), Paul and S.) Assume, almost surely,

FAn
D−→ FA, FBn

D−→ FB , both limits nonrandom d.f.’s, as n →
∞, and cn = n/N → c > 0. Then, with probability one FDn

D−→ F

as n → ∞ where F is nonrandom having Stieltjes transform m(z)

satisfying for z ∈ C+

(∗) m(z) =
∫

1
a

∫
b

1+cbedFB(b) − z
dFA(a),

where e has positive imaginary part and satisfies

(∗∗) e =
∫

a

a
∫

b
1+cbedFB(b) − z

dFA(a).

It is the only solution with positive imaginary part.
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Theorem (Paul and S.) In addition to the assumptions in the previ-

ous theorem, assume the conditions as in Bai and S. (1998) on the

entries of Xn, Bn is diagonal and both ‖An‖ and ‖Bn‖ are nonran-

dom and bounded in n. Let F cn,An,Bn denote the d.f. defined by

(∗) (∗∗) with c, FA, FB replaced, respectively, by cn, FAn ,FBn .

Assume the interval [a, b] with a > 0 lies in an open interval outside

the support of F cn,An,Bn for all large n.

Then,

P( no eigenvalues of Dn appears in [a, b] for all n large) = 1.

24




