Can One Hear the Heat of a Body? A Survey of Mathematics of Thermo- and Photoacoustic Tomography

David Finch (Oregon State), Peter Kuchment (Texas A&M), Leonid Kunyansky (Univ. Arizona)

Partially supported by NSF/DOE/IAMCS/KAUST

An outline

- Mathematical model
- Uniqueness of reconstruction
- Inversion formulas and procedures
- Stability
- Range description
- Limited view reconstruction
- Speed of sound recovery

Surveys of mathematics of TAT

• M. Agranovsky, P. K., L. Kunyansky, On reconstruction formulas and algorithms for the thermoacoustic tomography, Ch. 8 in "Photoacoustic imaging and spectroscopy," CRC Press. 2009

- D. Finch and Rakesh, The spherical mean value operator with centers on a sphere, Inv. Problems **23**(2007), No. 6, S37–S50.
- D. Finch and Rakesh, Recovering a function from its spherical mean values in two and three dimensions, Ch. 7 in "Photoa-coustic imaging and spectroscopy," CRC Press. 2009
- P. Kuchment and L. Kunyansky, Mathematics of thermoacoustic tomography, European J. Appl. Math., **19** (2008), 191–224.
- S. Patch and O. Scherzer (Eds), special issue, Inverse Problems **23**(2007), No. 6.

1. Thermoacoustic/Photoacoustic Tomography (TAT/PAT)

Goal: recover EM energy absorption f(x). Cancerous cells absorb several times more energy than the healthy ones \Rightarrow high contrast. Also high resolution of ultrasound.

Contributors present: Ambartsoumian, Arridge, Bal, Burgholzer, Finch, Haltmeier, Hristova, Kuchment, Kunyansky, Li, Nguyen, Palamodov, Quinto, Scherzer, Stefanov, Uhlmann, Xu.

2. Mathematical model

$$\begin{cases} p_{tt} = c^2(x)\Delta_x p, & t \ge 0, \quad x \in \mathbb{R}^3 \\ p(x,0) = f(x), & p_t(x,0) = 0, \\ p(y,t) = g(y,t) & \text{for } y \in S, \quad t \ge 0. \end{cases}$$

c(x) - sound speed; g(y,t) - data, S - observation surface.

- Given g, find f. Why is this problem solvable?
- $c = 1, \Leftrightarrow$ inversion of *restricted spherical mean transform*:

$$R_S f(p,r) = \omega^{-1} \int_{|y-p|=r} f(y) d\sigma(y), \quad p \in S, \quad r \ge 0.$$

• f(x) is NOT what's needed (hear talks by Arridge and Bal).

- Ultrasound attenuation is neglected (hear Burgholzer's talk).
- Detectors are assumed small omnidirectional. Other designs (Burgholzer, Haltmeier, Scherzer, et al) are integrating planar, line, and circular detectors. Mathematical models here are somewhat different.
- No free space outside S see below.

3. Uniqueness of reconstruction

Assume supp f - compact, S - observation surface. Image to measured data operator $R_S : f \mapsto g$. Q.: Can one uniquely reconstruct f from $g = R_S f$? A.1: If S is closed - **yes**, even for a variable speed (PK '93, Agranovsky-Berenstein-PK '96, Agranovsky-PK '07). A.2: 2D and constant speed - **yes** for S that does not fit into a Coxeter cross \bigcup finite set (Lin-Pinkus' conjecture '03, proof Agranovsky-Quinto '96):

Open: Any dim. and constant speed - **conjectured yes**, unless $S \subset$ zeros of a homogeneous harmonic polynomial \bigcup algebraic set of codim \ge 2. (Partial results Agranovsky-Quinto, Ambartsoumian-P.K. '05 (using Finch-Patch-Rakesh))

Open: Analog (even in 2*D*) of A.-Q. for decaying functions. (*S* closed - Agranovsky-Berenstein-P.K. '96) Open: Hyperbolic plane analog (even for compactly supported functions).

4. Inversion formulas and procedures

• Filtered backprojection (FBP) (Finch-Patch-Rakesh '04, Xu-Wang '05, Finch-Haltmeier-Rakesh '06, Kunyansky '06, Nguyen '09)

$$f(y) = -\frac{1}{8\pi^2} \Delta_y \int_S \frac{g(z,|z-y|)}{|z-y|} dA(z),$$

$$f(y) = -\frac{1}{8\pi^2} \int_S \left(\frac{1}{t} \frac{d^2}{dt^2} g(z,t)\right) \Big|_{t=|z-y|} dA(z).$$

Known for **constant speed** and S - **sphere** (cylinder and plane analogs exist).

Various formulas disagree outside the range. A unified approach to them is given by Nguyen '09. • Eigenfunctions series expansions (Norton's precursors '80, '81, Kunyansky '06, Agranovsky-PK '07) $S = \partial B, \psi_k(x), \lambda_k^2$ - eigenfunctions/eigenvalues of $A = -c^2(x)\Delta_D$ in *B*, speed *c*-non-trapping, *g* - data.

Series expansion

$$f(x)|_{B} = \sum_{k} f_{k} \psi_{k}(x),$$

$$f_{k} = -\lambda_{k}^{-1} \int_{0}^{\infty} \int_{S} \sin(\lambda_{k} t) g(x, t) \frac{\overline{\partial \psi_{k}}}{\partial \nu}(x) dx dt.$$

Works wonderfully when S - cube (Kunyansky '06).

• **Time reversal** (Fink, Finch-Patch-Rakesh '04, Xu-Wang '04, Burgholzer et al '07, Hristova-PK-Nguyen '08, Hristova '09, Stefanov-Uhlmann '09)

T – large, p(x,T) – small inside S. Solve back in time:

$$\begin{cases} p_{tt} = c^2(x)\Delta_x p, & t \ge 0, \quad x \in \mathbb{R}^3\\ p(x,T) = 0, & p_t(x,T) = 0,\\ p(y,t) = g(y,t) & \text{for } y \in S, \quad t \ge 0. \end{cases}$$

Find at t = 0 approximation for f(x) = p(x, 0).

Exact when dimension n > 1 is odd, speed is constant.

Works approximately (estimates by Hristova '09), best in odd dimensions with non-trapping speed.

Works for any S, any speed; allows the support outside S. Easy to implement.

- **Parametrix** (Popov-Sushko, Xu-Wang, Burgholzer-Haltmeier-...)
- Algebraic iterative procedures (Anastasio, ...)

Name	closed	exact	S	external	speed
	form			sources	
FBP	+	+	sphere	_	constant
Series	-	+	any?	+	any?
Time	-	-	any	+	any
reversal					
Parametrix	+	-	any	_	const
Algebraic	_	-	any	+	any

Open: Do closed form inversions exist for S not a sphere?
Open: Do closed form inversions exist that do not react to external sources?

Time reversal reconstruction of Shepp-Logan phantom (Y. Hristova)

Parametrix reconstruction of a physical phantom (Y. Xu)

 Stability Stability of reconstruction with full data and nontrapping speed is comparable to MRI or X-ray CT scan. (Palamodov '07, Stefanov-Uhlmann '09)

6. Range description

S - sphere. Range conditions for R_S ? Moment conditions (Lin& Pinkus '93, Agranovsky& Quinto '96, Patch '04) on data $g(p,r) = R_S f(p,r)$ (p - center, r - radius): $\forall k \in \mathbb{Z}, k \ge 0$,

$$G_k(\omega) = \int_0^\infty r^{2k} g(p, r) dr$$

is a polynomial of degree at most k. **Incomplete set** of range conditions.

Complete (Ambartsoumian & P. K '05, D. Finch & Rakesh '05, Agranovsky & P. K.& Quinto '06, Palamodov '08, Agranovsky & Finch & P.K. '09, Agranovsky & Nguyen '09).

Data $g(y,t) = R_S f = \int_{\mathbb{S}} f(y + \omega t) d\omega$. $S = \partial B$ – unit sphere. **Theorem**(AFK '09)*TFAE for a function* $g \in C_0^{\infty}(S \times [0,2])$:

(a)
$$g = R_S f$$
 for some $f \in C_0^{\infty}(B)$.
(b) $\forall (-\lambda^2, \psi_{\lambda}) - eigenv/eigenf$ of Δ_D , one has

$$\int_{S \times [0,2]} g(x,t) \partial_{\nu} \psi_{\lambda}(x) j_{n/2-1}(\lambda t) t^{n-1} dx dt = 0.$$

(c) Let $\hat{g}(x,\lambda) = \int g(x,t)j_{n/2-1}(\lambda t)t^{n-1}dt$. $\forall m \in \mathbb{Z}$, m^{th} spherical harmonic term $\hat{g}_m(x,\lambda)$ of $\hat{g}(x,\lambda)$ vanishes at non-zero zeros of Bessel function $J_{m+n/2-1}(\lambda)$.

7. Limited view

- Uniqueness (Agranovsky&Quinto '96, Finch-Patch-Rakesh '04, Stefanov&Uhlmann '09, Steinhauer '09)
- "Visible" singularities & instability. (Louis-Quinto '00, Xu-Wang-Ambartsoumian-PK '04, '09, Hristova-PK-Nguyen '08, Stefanov-Uhlmann '09, Nguyen '09)

The "invisible" parts are blurred.

8. Quality reconstructions from partial data

Q.: Can one obtain quality reconstructions if the whole object is in "visible" zone?

A.: Yes, at least for constant sound speed (Kunyansky 2008; Patch '04 used range conditions with less satisfactory results)

Phantom (left) in the visible zone and its reconstruction (right) (Kunyansky '08).

Open: Variable speed case.

9. Trapping: $H = \frac{c^{2}(x)}{2} |\xi|^{2}, \text{ bicharacteristics:}$ $\begin{cases} x'_{t} = \frac{\partial H}{\partial \xi} = c^{2}(x)\xi \\ c'_{t} = \frac{\partial H}{\partial \xi} = 1\nabla f \end{cases}$

$$\begin{cases} \xi'_t = -\frac{\partial H}{\partial x} = -\frac{1}{2}\nabla\left(c^2(x)\right)|\xi|^2\\ x|_{t=0} = x_0, \xi|_{t=0} = \xi_0. \end{cases}$$

Their projections to \mathbb{R}^n_x - *rays*.

Non-trapping condition: Rays (with $\xi_0 \neq 0$) tend to ∞ when $t \to \infty$. Non-trapping \Rightarrow decay and eventual smoothing in any compact region.

Trapping "crater" speed c(x) = |x| for $r_1 < |x| < r_2$.

Worse is a parabolic crater.

Variable speed and "full view" (Hristova-PK-Nguyen '08)

"Limited view" blurring effect due to trapping (crater (top) and parabolic (bottom) speeds).

10. Finding the sound speed

What if we get the speed wrong?

Phantom, sound speed, and their overlap.

Reconstructions: correct (left) and average (right) speed.

Can one find the speed?

Transmission ultrasound tomography before TAT (Xu-Wang). Open: Is the speed *c* uniquely determined by TAT data? Can one recover it? (analog of a SPECT problem) Successful numerical experiments (Anastasio-Zhang '06, Yuan&Jiang '05-...).

f is supported strictly inside $S \Rightarrow \text{constant}$ speed is determined uniquely (PK-Nguyen '08).

f is supported inside $S \Rightarrow$ range conditions **locally** uniquely determine coefficient α in $\alpha c(x)$ (PK-Nguyen '08).

Relation to the transmission eigenvalue problem (Finch '08). If $c_1(x) \ge c_2(x)$, TAT data coincide only if $c_1(x) = c_2(x)$ (Finch&Hickmann, Agranovsky '09).

Linearized uniqueness result in 1D (Nguyen '09), detection of constant speed in 1D (Finch&Hickman).