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An outline

• Mathematical model

• Uniqueness of reconstruction

• Inversion formulas and procedures

• Stability

• Range description

• Limited view reconstruction

• Speed of sound recovery
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1. Thermoacoustic/Photoacoustic Tomography (TAT/PAT)

S - observation surface

Goal: recover EM energy absorption f(x). Cancerous

cells absorb several times more energy than the healthy ones

⇒ high contrast. Also high resolution of ultrasound.

Contributors present: Ambartsoumian, Arridge, Bal, Burgholzer,

Finch, Haltmeier, Hristova, Kuchment, Kunyansky, Li, Nguyen,

Palamodov, Quinto, Scherzer, Stefanov, Uhlmann, Xu.



2. Mathematical model





ptt = c2(x)∆xp, t ≥ 0, x ∈ R3

p(x,0) = f(x), pt(x,0) = 0,
p(y, t) = g(y, t) for y ∈ S, t ≥ 0.

c(x) - sound speed; g(y, t) - data, S - observation surface.

• Given g, find f . Why is this problem solvable?

• c = 1,⇔ inversion of restricted spherical mean transform:

RSf(p, r) = ω−1
∫

|y−p|=r
f(y)dσ(y), p ∈ S, r ≥ 0.



• f(x) is NOT what’s needed (hear talks by Arridge and Bal).

• Ultrasound attenuation is neglected (hear Burgholzer’s talk).

• Detectors are assumed small omnidirectional. Other de-

signs (Burgholzer, Haltmeier, Scherzer, et al) are integrating

planar, line, and circular detectors. Mathematical models

here are somewhat different.

• No free space outside S - see below.



3. Uniqueness of reconstruction

Assume supp f - compact, S - observation surface.

Image to measured data operator RS : f 7→ g.

Q.: Can one uniquely reconstruct f from g = RSf?

A.1: If S is closed - yes, even for a variable speed (PK ’93,

Agranovsky-Berenstein-PK ’96, Agranovsky-PK ’07).

A.2: 2D and constant speed - yes for S that does not fit

into a Coxeter cross
⋃

finite set (Lin-Pinkus’ conjecture ’03,

proof Agranovsky-Quinto ’96):



Open: Any dim. and constant speed - conjectured yes,

unless S ⊂ zeros of a homogeneous harmonic polynomial
⋃

algebraic set of codim ≥ 2. (Partial results Agranovsky-

Quinto, Ambartsoumian-P.K. ’05 (using Finch-Patch-Rakesh))

Open: Analog (even in 2D) of A.-Q. for decaying functions.

(S closed - Agranovsky-Berenstein-P.K. ’96)

Open: Hyperbolic plane analog (even for compactly sup-

ported functions).



4. Inversion formulas and procedures

• Filtered backprojection (FBP) (Finch-Patch-Rakesh ’04,

Xu-Wang ’05, Finch-Haltmeier-Rakesh ’06, Kunyansky ’06,

Nguyen ’09)

f(y) = − 1
8π2∆y

∫

S

g(z,|z−y|)
|z−y|

dA(z),

f(y) = − 1
8π2

∫

S

(
1
t
d2

dt2
g(z, t)

) ∣∣∣∣
t=|z−y|

dA(z).

Known for constant speed and S - sphere (cylinder and

plane analogs exist).

Various formulas disagree outside the range.

A unified approach to them is given by Nguyen ’09.



• Eigenfunctions series expansions (Norton’s precursors

’80, ’81, Kunyansky ’06, Agranovsky-PK ’07)

S = ∂B, ψk(x), λ
2
k - eigenfunctions/eigenvalues of A = −c2(x)∆D

in B, speed c-non-trapping, g - data.

Series expansion

f(x)|B =
∑

k
fkψk(x),

fk = −λ−1
k

∞∫

0

∫

S
sin (λkt)g(x, t)

∂ψk
∂ν (x)dxdt.

Works wonderfully when S - cube (Kunyansky ’06).



• Time reversal (Fink, Finch-Patch-Rakesh ’04, Xu-Wang

’04, Burgholzer et al ’07, Hristova-PK-Nguyen ’08, Hristova

’09, Stefanov-Uhlmann ’09)

T – large, p(x, T) – small inside S. Solve back in time:





ptt = c2(x)∆xp, t ≥ 0, x ∈ R3

p(x, T) = 0, pt(x, T) = 0,
p(y, t) = g(y, t) for y ∈ S, t ≥ 0.

Find at t = 0 approximation for f(x) = p(x,0).

Exact when dimension n > 1 is odd, speed is constant.

Works approximately (estimates by Hristova ’09), best in odd

dimensions with non-trapping speed.

Works for any S, any speed; allows the support outside S.

Easy to implement.



• Parametrix (Popov-Sushko, Xu-Wang, Burgholzer-Haltmeier-

...)

• Algebraic iterative procedures (Anastasio, . . . )

Name closed exact S external speed
form sources

FBP + + sphere - constant

Series - + any? + any?

Time - - any + any
reversal

Parametrix + - any - const

Algebraic - - any + any
•Open: Do closed form inversions exist for S not a sphere?

•Open: Do closed form inversions exist that do not react to

external sources?



Time reversal reconstruction of Shepp-Logan phantom

(Y. Hristova)



Parametrix reconstruction of a physical phantom (Y. Xu)



5. Stability Stability of reconstruction with full data and non-

trapping speed is comparable to MRI or X-ray CT scan.

(Palamodov ’07, Stefanov-Uhlmann ’09)

6. Range description

S - sphere. Range conditions for RS? Moment conditions

(Lin& Pinkus ’93, Agranovsky& Quinto ’96, Patch ’04) on

data g(p, r) = RSf(p, r) (p - center, r - radius):

∀k ∈ Z, k ≥ 0,

Gk(ω) =

∞∫

0

r2kg(p, r)dr

is a polynomial of degree at most k. Incomplete set of

range conditions.



Complete (Ambartsoumian & P. K ’05, D. Finch & Rakesh

’05, Agranovsky & P. K.& Quinto ’06, Palamodov ’08, Agra-

novsky & Finch &P.K. ’09, Agranovsky & Nguyen ’09).

Data g(y, t) = RSf =
∫
S f(y + ωt)dω. S = ∂B – unit sphere.

Theorem(AFK ’09)TFAE for a function g ∈ C∞
0 (S × [0,2]):

(a) g = RSf for some f ∈ C∞
0 (B).

(b) ∀(−λ2, ψλ) – eigenv/eigenf of ∆D, one has
∫

S×[0,2]

g(x, t)∂νψλ(x)jn/2−1(λt)t
n−1dxdt = 0.

(c) Let ĝ(x, λ) =
∫
g(x, t)jn/2−1(λt)t

n−1dt. ∀m ∈ Z, mth spher-

ical harmonic term ĝm(x, λ) of ĝ(x, λ) vanishes at non-zero

zeros of Bessel functionJm+n/2−1(λ).



7. Limited view

• Uniqueness (Agranovsky&Quinto ’96, Finch-Patch-Rakesh

’04, Stefanov&Uhlmann ’09, Steinhauer ’09)

• “Visible” singularities & instability. (Louis-Quinto ’00,

Xu-Wang-Ambartsoumian-PK ’04, ’09, Hristova-PK-Nguyen

’08, Stefanov-Uhlmann ’09, Nguyen ’09)

The “invisible” parts are blurred.



8. Quality reconstructions from partial data

Q.: Can one obtain quality reconstructions if the whole ob-

ject is in “visible” zone?

A.: Yes, at least for constant sound speed (Kunyansky 2008;

Patch ’04 used range conditions with less satisfactory results)

Phantom (left) in the visible zone and its reconstruction

(right) (Kunyansky ’08).

Open: Variable speed case.



9. Trapping:

H = c2(x)
2 |ξ|2, bicharacteristics:






x′t =
∂H
∂ξ = c2(x)ξ

ξ′t = −∂H
∂x = −1

2∇
(
c2(x)

)
|ξ|2

x|t=0 = x0, ξ|t=0 = ξ0.

Their projections to Rnx - rays.

Non-trapping condition: Rays (with ξ0 6= 0) tend to ∞
when t→ ∞. Non-trapping ⇒ decay and eventual smoothing

in any compact region.

Trapping “crater” speed c(x) = |x| for r1 < |x| < r2.

Worse is a parabolic crater.



Variable speed and “full view” (Hristova-PK-Nguyen ’08)

“Limited view” blurring effect due to trapping (crater (top)

and parabolic (bottom) speeds).



10. Finding the sound speed

What if we get the speed wrong?

Phantom, sound speed, and their overlap.

Reconstructions: correct (left) and average (right) speed.



Can one find the speed?

Transmission ultrasound tomography before TAT (Xu-Wang).

Open: Is the speed c uniquely determined by TAT data?

Can one recover it? (analog of a SPECT problem)

Successful numerical experiments (Anastasio-Zhang ’06,

Yuan&Jiang ’05-. . . ).

f is supported strictly inside S ⇒ constant speed is deter-

mined uniquely (PK-Nguyen ’08).

f is supported inside S ⇒ range conditions locally uniquely

determine coefficient α in αc(x) (PK-Nguyen ’08).

Relation to the transmission eigenvalue problem (Finch ’08).

If c1(x) ≥ c2(x), TAT data coincide only if c1(x) = c2(x)

(Finch&Hickmann, Agranovsky ’09).

Linearized uniqueness result in 1D (Nguyen ’09), detection

of constant speed in 1D (Finch&Hickman).


