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Electrical Impedance Tomography (EIT)

We would like to reconstruct the electric conductivity σ(x) within the body:

Apply currents Measure potentials



EIT: mathematics

Electric potential u(x) satisfies the divergence equation

∇ · σ(x)∇u(x) = 0,

Electrical current at the point x equals σ(x)∇u(x).

Electrical on the boundary equals σ ∂
∂nu(x).

One measurement:
Apply on ∂Ω currents σ ∂

∂nu = g(x) and measure the potentials U(x) = u |∂Ω .

U(x) is one-dimensional, need more data:
Use different configuration of currents gk(x); measure the potentials Uk(x).

Reconstruction problem: given gk(x), Uk(x), k = 1, ...N, reconstruct σ(x).



The instability of EIT

Suppose Ω is the unit disk and σ(x) = 1 in Ω. Then u(r, θ) is harmonic in Ω.

Suppose currents gk(θ) = exp(ikθ), k = 1, 2, .... Then

uk(r, θ) =
1

k
rk exp(ikθ).

Within a smaller disk Ω1 of radius 1/2 potentials decrease exponentially:

|uk(r, θ)| ≤ 1

k2k
→
k→∞

0

Currents just do not want to go inside! EIT is exponentially unstable!



Example of EIT (Courtesy Wikipedia)



Stabilizing EIT with the help of acoustic waves

Acoustic pressure changes the conductivity of the tissues!

Keep currents 
steady! Measure potentials

Send acoustic waves!



Modeling AEIT

The change is proportional to σ(x):

lnσnew(x, x0) = lnσ(x) + ln ξ(x)

Factor lnξ(x) is small and proportional to the change in acoustic pressure.

Simplest approach: assume that the pressure can be localized

ln ξ(x) = ηx0
(x)

where ηx0
(x) � 1 is a radial function (of |x − x0|) centered at x0, with a

narrow support



First results

Perturbation ηx0
(x) =⇒ solution is u(x) + wx0

(x)

"Electrical Impedance Tomography By Elastic Deformation" (2008)
H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Tanter, and M. Fink:∫

∂Ω

wx0
(x)dA(x) ≈ σ(x0)|∇u(x0)|2 = S(x0)

(1) Find S(x0) for x0 scanning Ω.

(2) Repeat for a second set of different BC.

(3) Solve a non-linear optimization problem, find σ(x) and ∇u from S(x).

Major drawback: non-linearity — as we will see...



A linear approach (new)

Re-write the divergence equation:
∆u(x) +∇u(x) · ∇ lnσ(x) = 0

Perturbation w(x) satisfies:
∆w +∇w · ∇ lnσ = −∇u(x) · ∇η(x− x0)

Assume ηx0
(x) approximates the Dirac’s δ-function δ(x− x0):

∆w +∇w · ∇ lnσ(x) ≈ −∇u(x0) · ∇δ(x− x0) + ∆u(x0) · δ(x− x0)

G(x, x0) is the (unknown) Green’s function:
w(x) ≈ −∇u(x0) · ∇G(x, x0) + ∆u(x0)G(x, x0),

w(x) is measured on ∂Ω. If some approximation to G(x, x0) is known, find
∇u(x0) and ∆u(x0) by matching the boundary values.

Repeat while varying x0 =⇒ reconstruct ∇u(x0) and ∇u(x0) on the
computational grid.



Reconstructing the conductivity

Re-write the original equation

∆u(x) +∇u(x) · ∇ lnσ(x) = 0

as

∇u(x) · ∇ lnσ(x) = −∆u(x).

Now since ∇u(x) is known, this a first order PDE (transport equation).

It can be solved for lnσ(x).



Numerical simulations: the details

Need to solve for v(x) efficiently. Importantly, v extends to a C∞ double
periodic function on R2 =⇒ approximations by cosine Fourier series are
spectrally accurate and fast.

Reduce to Fredholm second kind and solve

v + ∆−1(∇v · ∇ lnσ) = −∆−1

(
∂σ

∂x1

)



Reconstructions with delta-like perturbations

Phantom lnσ(x) ... currents ... potentials
maxσ(x) = 1.05 measured measured
minσ(x) = 0.95



New idea: synthesizing the measurements

Problem: There is no way to apply the delta-like pressure ηx0
(x) ≈ δ(x−x0)

inside the body.

Solution: Send spherical waves instead, and synthesize the necessary
measurements!



The mathematics of synthesis

New representation for the Bessel function (almost Helmholtz):

J0(λ|x− y|) = c Im

∫
∂B

[
Φ(λ|z − x|) ∂

∂nz
J0(λ|z − y|)

−J0(λ|z − x|)
∂

∂nz
Φ(λ|z − y|)

]
dlz

where Φ(λ|x|) is the free-space Green’s function for the Helmholtz equation.
Or,

J0(λ|x− y|) = c1 Im

∫
∂B

Φ(λ|z − x|) ∂

∂nz
Φ(λ|z − y|)dlz

J0(λ|x−y|) is expressed in terms of outgoing cylindrical waves Φ(λ|z−x|).
Works in all dimensions!



The mathematics of synthesis, continued

On the other hand

exp

(
−|x− y|

2

a2

)
=

∫ ∞
0

J0(λ|x− y|) exp

(
−λ

2

b2

)
λdλ

So

ηx0
(x) = exp

(
−|x− x0|2

a2

)
≈ Im

∞∑
k,m=0

αk(x0)Φ(λk|zm − x|)

Now, if w(x, ηx0
) is the perturbation due to ηx0

(x), and

if w(x,Φ(λk|zm − x|)) is the perturbation due to Φ(λk|zm − x|),
then, by linearity:

w(x, ηx0
) ≈ Im

∞∑
k=0

αk(x0)w(x,Φ(λk|zm − x|))



Example: conductivity almost constant

Phantom lnσ(x) Reconstruction Reconstruction
maxσ(x) = 1.05 Left-to-right Average
minσ(x) = 0.95



Example: conductivity varies a lot

Phantom lnσ(x) Reconstruction Reconstruction
maxσ(x) = 2.0 Left-to-right Average
minσ(x) = 0.5



Using two measurements to reduce error?

(1) Use one set of currents, recover ∇u(1).

(2) Use another set of currents, recover ∇u(2).

(3) Now {
∇u(1) · ∇ lnσ = −∆u(1)

∇u(2) · ∇ lnσ = −∆u(2)

Solve this 2×2 linear system at each x, find ∇ lnσ(x).

Will this help to avoid error propagation along characteristics?

Work in progress, we’ll see...


