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1. How do you make a CD
image using an MR imager?

o The imager yields an arra R [~
of complex r¥umbers L Z=me
related to the nuclear

magnetization at points

Inside the object.

o The magnitude, m, forms
the standard MR image .

o An applied low-frequency
current creates a magnetic

field which affects the Magnitude  Phase
phase image. MR Image  Image



>

LF CDI is based on Ampere’s
law J =V xB/ p,

Where B 1s the magnetic field

produced by the current density J

o The phase 8depends linearly on the magnetic
field component B, produced by the current
density J and the duration of the current

pulseT. 0=yB,T.
where B= (B, B, B,)

o To measure B, and B, we rotate the object.
(Seo et al. use only B,)
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Defibrillator Currents in a Live
Pig
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J1

2. CDII (Current Density = 4
Impedance Imaging)

J
(Vxd,e(d,xJ,)) \Jlxiiz\z

J2
‘Jliz‘z
J, xdJ,
I xJ,[

Vin(o)=|-(VxJ e(J, xJ,))

HVxJ, ed))

where o = electrical conductivity.

Independently discovered by J. Y. Lee (2004)



Experimental Verification

An agar + TX151 gel Reconstructed currents
in saline “popsicle”

phantom



o Depth Resolution in CDII

o Distance from electrodes from 30 to 80 mm.

o Average conductivity contrast ratio 1.21

o Validated with careful direct bench measurements
o Resolution is maintained with depth.



o)

0.8 -->2.0 s/m

CDIl of a LIVE piglet

CDI study

not geared
towards CDII !

MRI image 2 mm resolution CDI -Two current vector fields

4mm resolution
(to cut down
acquisition time)
Motion artefacts
No averaging

Conductivity
range

CDII overlaid on MRI (slice 39, two different times)



Slice 40
Slice 41
Slice 42




3. What if we only measure
one current, in fact only its
magnitude |J| ?

Motivation:
o Cuts down acquisition time.

o Math turns out to be beautiful: this
brings Minimal Surfaces, Geometric
Measure Theory into the field of
Inverse Problems.

o Opens up the possibility of another
physical approach to obtain such data

directly.



Equipotential surfaces = minimal surfaces (in 2D geodesics)

Theorem 1 (N-Tamasan-Timonov *07) Ifu € C1(R) is an electric
potential with current density J, |J| > 0, then the level sets

Ye = {x : u(x) = ¢} are surfaces of zero mean curvature in the
conformal metric g = |.J|>/("=VI; They are critical surfaces for the

functional

(1) E(®) = [ 11145,
b

where dS is the Euclidean surface measure.




Example of non-uniqueness in the Dirichlet Problem
(Sternberg& Ziemer)

% (|Vu(;1:)|_1vu(m)) =0, z € D = unit disk,
u(z) = (x1)? — (22)%, z € OD.

One parameter family of viscosity solutions:

r‘
2x1)? — 1, if o] 2 /52 o] <4/ 15
A . _
wMz) =< ), if o] <4/, |ze| < (/1
1—2(x9)%, if |z1] < /12, |2o| > (/152




Consider a minimization problem instead!

min {/ |J(z)| - |[Vu(z)|dz : ulag = f}
Q
e Formally the Euler-Lagrange equation is

J]
Vu|

V- ( Vu) =0.

e In the SZ example only . (for A\ = 0) is a minimizer of
[q [Vu(z)|dz.

Note: u°

cannot come from a conductivity (|.J| = 1).




The voltage potential ug is a minimizer for F|u]

V-oVug =0, upglsn = f, a = o|Vug|, v=outer normal at 02,
and A,= Dirichlet-to-Neumann map:

Flu] :] fa[V-u|d;r:/ a|Vug| - |Vuldz > / o|Vug - Vu|dx
0 0

Q

du
> ] aVug - Vudzx :f Jﬂ’udﬁ — Ty D
Q )

A0 C)L’

The lower bound is achieved when u« = uy.




Definition: admissible pair (f.a) € H'/2(0Q) x L*(Q)

do(z) with 0 < c_ < o(z) < o4, such that, if u, is weak solution
V-oN e =0, Uslpn =],

then
loVu| = a.
o = generating conductivity for the pair (f, a)

u = corresponding potential.

Note:

e the pair (f,|/J|) for ideal measurements is admissible;

e But ((x1)? — (z2)?|ap, 1) is not admissible.




A characterization of admissibility
() ¢ R™ adomain and (f, |J|) € H'/2(69) x L2(9).

o If (f,|J|) is admissible, say generated by some conductivity oy
and with u is the corresponding voltage potential, then

ug € argmin {Fu] : u € HY(Q), ulpa = f}

and |J|/|Vug| € LY (D).

o Conversely, if ug € argmin {F[u]: ue€ H'(), ulso = [} and
J|/|Vug| € LL(2), then (£, |.J|) is admissible.




Unique determination

Theorem 2 (N-Tamasan-Timonov ’09)

Q0 ¢ R™ = domain with connected, C1*- boundary

(f,|J]) € CL(89Q) x C*(Q) = admissible pair; |.J| > 0 a.e. in .
Then  min [, |J||Vu|dz

o {u E Wl’l(ﬂ)ﬂc(ﬁ)r Vu| > 0a.e., u|ag = f}

has a unique solution, say ug;

o = |J|/|Vug| is the unique conductivity generating (f,|J|).

Remark There is also a corresponding stability result
(Nashed-Tamasan’ 09).




A minimization algorithm

min F'lu| = 111111/ﬂ a(x)|Vu(x)|dz.

Let 2 C R™. For un—1 € H'(Q) given with 32— € LE°() define

a

and construct u,, as the unique solution to

On,

V-o,Vu, =0,

Unlan = f.




Sufficient conditions for the iterations to make sense

(2 be a C'* simply connected domain in R?,

acC*Q),a>0,

f € C12(0Q), almost-two-to-one.

Then
o u, € C+(Q), 0, = a/|Vu,_1| € C*(R).
o Flun| = [, a|Vun|dz > 01is decreasing,
o Tt o0 Fltn] = limn oo (Ao £, f):

e lim, . fﬂ On|Viin—1 — Vg ?dz =0

o lim, .o [, a|Vt, — Vu,_q|de =0.




A sufficient condition for being a minimizing sequence

A uniform upper bound: o,, < M, ¥ n.

Then

n—oo

lim Flu,| = min{/ a|Vu|dz : v HY(Q), u|sq = f}.
Q




Figure 1: The original conductivity distribution (left) and the initial approxima-
tion (right)




G.a: T T T T T T T T T T T T T T **w T :
- x .
- * -
C " ]
N 600 .
b2 o =
= % ° o .
> r oY Gg .
B C of90og <y 3
T C °07  t 4y DOR Bif
£ C b I i Q
o r Oyt +
2 oak G M
T Py aqé + % N
g C TR Em @ﬁDE++++++Eﬁ .
S oo .\ %, “onood-o :
: E'EESE@§+++++ED;E o o ]
= C #Oono g ool ]
0.0 Qogog * * -
- T * % .
C ¥ 7
C £ ]
—D.1 C 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 ]
0.0 0.2 0.4 0.B 0.8 1.0
o

Figure 1: One slice: += initial approximation, (= 5 iter., o= 50 iter., and x=

100 iter (indistinguishable from the simulated conductivity)




Local uniqueness from partial data

Theorem 3 (N-Tamasan-Timonov '09) Let 2 C R? be simply
connected. For i = 1,2 let o; € C%(£2) and u; be o;-harmonic with

ui|aq € CH*(0Q) almost two-to-one. For a < b let
Qopi={2€Q: a<u(z) <b}, T':=Qp[ |00

Assume wy|r = ug|r and |Jy| = |Ja| in the interior of (1, .

Then

(1) fxeQ: a<ug(z) < b} = s,

g |

(2) up = ug in Qqp, and

(3) o1 = 09 in g p.




Reconstruction from partial data

e The two-point boundary value problem for geodesics joining
equipotential points at the boundary has a unique solution.

e We solve above numerically.

e More accurate than the quasi-iteration, but slower.

e Only requires u|r and |.J| in the region of interest.




