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Inverse problems with interior control

A generic feature of many inverse problems in imaging is severe ill-
posedness. Such ill-posedness typically results in reconstructed im-
ages with low spatial resolution. We will show that improvements in
resolution are possible, in principle, if “internal degrees of freedom”
of the scatterer are experimentally manipulated.

e Biomechanical imaging

e Current-density impedance imaging

e Acousto-electric impedance tomography
e Deconstructing the Born series

e Acousto-optic imaging

e Many more...



Acousto-optic imaging




Acousto-optic images
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Overview

e In acousto-optic imaging (AOI) the images are not tomographic.

e We show that tomographic images can be reconstructed from elasti-
cally scattered light that is modulated by a standing acoustic wave.

o We take advantage of the separation of scales: ¢, < c.

e Neither interferometric measurements of tagged photons nor the use
of a focused acoustic wave field is required.



Model |

Consider a fluid suspension of scattering particles on which an acoustic
wave is incident. The acoustic wave leads to spatial modulation of the
number density of scatterers and the speed of light in the medium. If the
amplitude of the pressure wave is sufficiently small, each particle will os-
cillate independently about its local equilibrium position. The equation of
motion of a particle with velocity u is of the form

d_u _ 4dmna
Pat = v

(v—u)—Vp,

where 7 is the effective viscosity of the suspension, v is the velocity of the
fluid and p is the pressure.



Model II

Consider a standing time-harmonic acoustic plane wave of frequency w
with pressure
p = Acos(wt)cos(k-r+ ), (1)

where we have assumed that the speed of sound c; is constant with k =
w/cs.

Let Ri,...,Ry denote the positions of the particles in the fluid. Then,
since each particle moves independently

A
R; = Rg; — —5 cos(wt)sin(k-r+p)k, i=1,...,N.
pw

The number density of particles is defined by o = ) . §(r — R;(¢)) . Define
the small parameter ¢ = Acos(wt)/(pc?) < 1. The number density is
modulated according to

o(r) = oo(r) [1 + €cos(k-r +¢)] ,

where py(r) is the equilibrium number density of the particles.



Propagation of diffuse light I

Within the textcolorreddiffusion approximation to the RTE, the energy
density u obeys

V. [Dn2v (%)M%u:o n Q.
u—l—fg—z:cS(r—ro) on Of),

where 1, is the absorption coefficient and n is the index of refraction. The
diffusion coefficient D is defined by D = ¢ [u, + (1 — g)us| /3 , where g
is the scattering coefficient and g is the anisotropy of scattering. The scat-
tering and absorption coefficients are related to the number density by
ps = oos and p, = po,, where o and o, denote the scattering and absorp-
tion cross sections of the particles. We account for variations in the index
of refraction according to n(r) = ng [1 + eycos(k - r + )| , where ny is the
index of refraction in the absence of the acoustic wave and ~ is the elasto-
optical constant. The optical properties of the medium are thus modulated
by the acoustic wave.



Propagation of diffuse light II

Define v, = u/n? and g = n?d(r — rp). We then have

-V -DNVY. +ap. =0 in Q,

¢€+€%ie=g on o).
Here acr) = ao(r)[L+e(2y+1)cos(k -+ )] .
De(r) = Do(r)[1+e(2y —1)cos(k -+ )] |

where o and D, are the absorption and diffusion coefficients in the ab-
sence of the acoustic wave.

The solution to the above PDE is given by

Ye(r) = vo(r) — G/dBT’ (27 + DG (r, )10 (r")ao(r)
+(2v = 1)V G(r, ') - Viho(r') Do (r')] cos(k - r’ + ) + O(€?) .



Size of acousto-optic effect

The relative change in intensity due to the presence of an acoustic plane
wave is of the order

% ~ € {1 + (mL)Q} e "l

where L is the source-detector separation and « = y/a/D. Choosing typ-
ical values of the above parameters in tissue: xk = 1 cm™!, L = 1 ¢cm and
e = 1073. To estimate ¢, choose p = 1 gecm ™3, ¢, = 1.5 x 10° cm s~ ! and
A = 10° Pa. We find that AT/I ~ 10~° which is expected to be observable.
Note AI/I would be significantly smaller for the case of a focused beam,
assuming equivalent incident power.



The experiment

' D

Fix the source and detector and measure the transmitted
intensity as the wavevector of the acoustic wave is varied



Inverse problem

The inverse problem of AOQOI is to reconstruct oy and Dy from .. Define
¢ = 01/ 0¢€|.—p, which can be determined from measurements carried out

in the presence and absence of the acoustic wave.

o(r) = /K(r,r’) cos(k - ' + @)d’r’ |

where
K(r,1) = [(27+ DG (r, ot )ag(r) + (2 = Ve G(r,r') - Vibo (') Do(x')] -

Suppose we fix the positions of the optical source and detector and vary
the wave vector k and the phase ¢. It is then possible to recover K(r,r’)
by inversion of a Fourier transform.



Inverse problem (iterative method)

Recall that we know K from measurements.

K(r,r') = [(27 4+ 1D)G(r, r')¢o(r)ao(r') + (27 — D)V G(r, 1) - Viho(r) Do ()] -

Suppose that ap = 0. Then Dy = A|Dy], where the nonlinear operator .4
is defined by

K(r,1')
(2v — 1)V G(r,r") - Vipo(r')

A[Do](xr") =

Applying fixed-point iteration we have
D" = ADMM], n=1,2,....

At each step it is necessary to compute the Green’s function G, which de-
pends upon the current estimate of Dy. Measurements from two indepen-
dent sources are required to reconstruct both o and D.



Inverse problem and the 0-Laplacian

For a point source, we have seen that

f(r) = (2y = 1)Do(r) (Vo (r))* + (27 + Dao(r)y5(r)

is known from measurements.

Suppose that ap = 0. Then

Do(r) = ])”( r)

(27 = 1)(Vapo(r))?

We find that 1y obeys the nonlinear equation

: ! = in
Oty
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=g on 0f).

Once 1)y is found by solving the above PDE, we can recover the diffusion
coefficient D.



Reconstruction of absorption and scattering

Consider the problem of recovering both oy and Dy. We require data from
two sources g; and g-.

fi(r) = (27 = 1) Do(r) (Ve (r))* + (27 + Dao(r)p(r) , k=1,2.

Solving for o and Dy we find

) = DEOVE0) — L) (V)
27+ 1) [30) (V1) — @3(0) (Ve (1))7]
Fo(0)03(x) — f1(1)U3 ()

(27 = 1) [ () (Vo (r))? = b3 (r) (Veha (r))?]

The vy, are then obtained by solving the system of nonlinear equations
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V- DoV 4+ agthy =0 in Q,
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Once the 1), are found, we can then recover oy and Dy.



Remarks

The inverse problem of AOl is expected to be well-posed, requiring only a
Fourier inversion followed by fixed-pointiteration. In contrast, the inverse
problem of optical tomography is severely ill-posed with logarithmic sta-
bility. This ill-posedness is responsible for the relatively low resolution of
the method.

The 0-Laplacian was studied by Ammari and collaborators in a different
physical context.

The diffusion approximation is valid when the energy density varies slowly
on the scale of the transport mean free path. This condition breaks down

when the acoustic wavelength is sufficiently small. It would thus be of

interest to extend the theory we have developed to the transport regime.

Open problems:
convergence, stability, error estimates for iterative algorithm

existence, uniqueness for 0-Laplacian and its generalization



Conclusions

We have developed a tomographic method for acousto-optic imaging.

Neither interferometric measurements of tagged photons nor the use of a
focused ultrasound beam is required.

Our approach is based on the solution to an inverse problem for the diffu-
sion equation with interior control of boundary measurements.



