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Convective parameterization

w
-l |
-

@ GCM Grid cell 20-400km

Many clouds and especially the processes within them are subgrid-scale size
both horizontally and vertically and thus must be parameterized.

This means a mathematical model is constructed that attempts to assess their

effects in terms of large scale model resolved quantities.
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Parameterization Basics

Arakawa & Schubert 1974

i, 1, A unit horizontal area at some level between cloud base and the highest
cloud top. The taller clouds are shown penetrating this level and entraining environ-
mental air. A cloud which has lost buoyancy is shown detraining cloud air into the
Environment.

Key Quasi-equilibrium assumption:

Tadj <K Tls
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Quasi-equilibrium

B Convective equilibrium requires scale separation
m Large scale uniform over region containing many clouds
m Large scale slowly varying so convection has time to respond

B Convective activity within a small grid cell is highly variable(even in
statistically stationary state)
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Fluctuations In radiative-convective equilibrium
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B For convection in equilibrium with a given forcing, the mean mass flux should be well defined.

B At a particular time, this mean value would only be measured in an infinite domain.

B For aregion of finite size:
B What is the magnitude and distribution of variability?
Bl What scale must one average over to reduce it to a desired level?
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Main assumptions

Assume:

1.Large-scale constraints- mean mass flux within a region (M) is given in terms
of large scale resolved conditions

2.Scale separation- environment sufficiently uniform in time and space to
average over a large number of clouds

3.Weak interactions- clouds feel only mean effects of total cloud field( no
organization)

Find the distribution function subject to these constraints
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Other constraints

1 I ] I ]
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rAean mass Mug (2 107 kgs =%

B () is not necessarily a function of large scale forcing
B Observations suggest that (m) is independent of large scale forcing
B Response to the change in forcing is to change the number of clouds.

B () might be only sensitive to the initial perturbation triggering it and the dynamical
entrainment processes.
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B mass flux of individual clouds are statistically un-correlated :

()\M)ne—AM

Pypr(n) = Prob{N [(0, M]) = n} = oy

given A = 1/((m)) is fixed.

B Poisson point process implies:

1 __m_
m) = ——e (m)
P(m) )

B The total Mass flux for a given N Poisson distributed plumes is a Compound point process:
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Predicted distribution

So the Generating function of M is calculated exactly:

N o
G(t) = (M) v = (' 25 ™) N

(™) N = (g™ ()N
— e—AeAg(t)

where
gt) =(e")m  A=(N)
Therefore the probability distribution of the total mass flux is exactly given by:

P(M)=P(M) = (<i>>1/2 e NI pp=1/2e=M/m) 1) (2 (@M>1/2>

(m) (m)

All the moments of M are analytically tractable and are functions of (V) and (m).

((OM)7) _ 2

)2 (N
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Estimates

B In aregion with area A and grid size Ax > L where L the mean cloud
spacing is:

L= (A/(N)'/? = ((m)A/(M))"/?

B Assume latent heat release balance radiative cooling S,
rate of Latent heating =~ Convective mass flux X Typical water vapor mass mixing
ratio q

lvq<—]\j> =5

B Estimate:
S =250Wm~2, ¢ = 10gkg~ ! and [, = 2.5 x 10°Jkg~! gives
(M)/A =10"2%kgs™tm™2

B (m) = wpo with w ~ 10ms~! and o ~ 1km? gives
(m) ~ 107kgs™1
hence
L ~ 30km

L
= V233
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CRM distributions of cloud mass flux
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Craig and Cohen JAS (2006)

Resolution: 2kmx 2kmx 50 levels

Domain: 128 kmx 128 kmx 21 km

Boundary conditions: doubly periodic, fixed SST of 300 K

Forcings: fixed tropospheric cooling of 2,4,8,12,16 K day !
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CRM mass flux variance

Without organization
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Left panel: normalized standard deviation of are-integrated convective mass flux versus

characteristic cloud spacing.

Right panel: Various degrees of convection organization: un-sheared(*), weak shear (), strong

shear(+).
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Simulations with a 'cloud resolving’ model

Resolution:

Domain:

Boundary conditions:

Forcing:

scheme

2kmx 2kmx 90 levels

96 kmx96 kmx 30 km

doubly periodic, fixed SST of 300 K

An-elastic equations with fully interactive radiation
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A 2D cut through the convective field

w’ (m/s) & q (ppmm) y= 48 5h+81 7min

30 ¥
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In cloud properties up-drafts M(t) and A(t)
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and T(t)

t)

(
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Distribution of CAPE and LNB
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Short and long wave heating rates
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Adjustment time

z=1517m ——
2=4989.53 m
z=8403.16 m
z=11400.00 m
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The adjustment time of the total heating rate Qr = Qs + @1, and the mass flux at various altitudes.

The 7,4; varies in the range of ~ 2 — 4 hours .
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Auto-correlation of up-drafts M
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CM(é,T) =

where M = M — (M) and (- --) is a time average.
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Auto-correlation of up-drafts A
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Auto-correlation of up-drafts
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Auto-correlation of g,

'72=1517m ——
z=4989.53 m
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Auto-correlation of g,

z=1517m ——
z=4989.53 m
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Auto-correlation of I’

z=1517m ——
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CAPE auto-correlation

Speculation:
H?pc,(df/dz)
Trad —
<Qrad>

Assuming (Q,qq) = 125Wm~2%, H = 15Km, p = 0.6kgm—3, df/dz = 3Kkm™!

gives wy ~ 0.005cms~! and 7,44 ~ 30 days.
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Spatio-temporal delayed correlation function
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< A(z,t) A(z+0,t+1) >

Information transportin A,
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Information transport in M,
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Information transport in
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Mean characteristics

B — &=

0.001 0.002 0.003 0.004 0.005 0.006
<M> (Kg m s'l)

Mass flux fluctuation in a cloud resolving simulation with diurnal forcing — p.33/46



¥

[ —
1 1 1 1 1 1 1

2 25 3 35 4 45 5 55 6 6.5 : 15 2 25 3 35 4
<N> <0.> (X 4x10° m2)

Mass flux fluctuation in a cloud resolving simulation with diurnal forcing — p.34/46




Fat tails of marginal PDF of up-draft area coverage
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Altitude variability of total Mass flux PDF
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z =4989.5 m z = 6907.73 m
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z = 11400.00 m z = 12900.00 m
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Mass flux variance

<l\||><(5|\/||)2>/<|\/||>2 ——

—

The scaling of the variance of total mass flux and number of active grids in different heights with the
Craig and Cohen prediction:
((6M)*) 2
(M)? (N)
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Mass flux Skewness

I<N>2<(|6M)3>/<IM>3 ———

)>

The prediction:
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Clustering degree

If N(A) is the number of clouds in any sub-area A C S then P,[N(A) = k] is defined by

(v|AD*e 14
k!

Pp[N(A) = k] =
where ~|A| is the average number of clouds in the sub-area with size |A]|.

Centered on any arbitrary cloud we define the probability of finding the farthest neighboring cloud
with a given Euclidean distance less than r, i.e. I1 (7).

(r) 1 -7 (r) =1 - Pp(N(A) = 0)

1 _ 6—")’7[")"2

p

)

where |A| = 7r? is used.

For obtaining the clustering degree one measures directly the cumulative probability of having k
clouds inside a ball of radius r centered around any existing cloud in each altitude.

Then

_ = (r)

R )

Mass flux fluctuation in a cloud resolving simulation with diurnal forcing — p.42/46



Clustering |

10 20 30 40 50 60
r (Km)

In a radius of around 10 km any cloud is surrounded with more neighboring clouds than a Poisson

distribution predicts.

Mass flux fluctuation in a cloud resolving simulation with diurnal forcing — p.43/46




Clustering |
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Summary

Analysis of the time scales shows that a state of quasi-equilibrium establishes in our CRM
simulation with diurnal forcing.

The response of the total up-draft mass flux to the total heating rate at all heights indicates to a
range of 2 — 4 hours adjusting time.

The statistics of the total up-draft mass flux is qualitatively consistent with the predictions of the
Cohen and Craig (2006).

The Gibbs theory under-estimates the variance and skewness of the total mass flux.

Analysis of our CRM simulation shows that the non-interacting assumption employed in the
Craig and Cohen theory does not hold as we demonstrate the clouds preferentially cluster .

Mass flux fluctuation in a cloud resolving simulation with diurnal forcing — p.45/46



	References 
	Convective parameterization
	Parameterization Basics
	Quasi-equilibrium
	Fluctuations in radiative-convective equilibrium
	Main assumptions 
	Other constraints
	 
	Predicted distribution
	Estimates
	CRM distributions of cloud mass flux
	CRM mass flux variance
	Simulations with a 'cloud resolving' model
	A 2D cut through the convective field 
	In cloud properties up-drafts M(t)
and A(t)
	Long time portraits of $q_l(t)$,
$q_v(t)$ and T(t)
	short time portraits of $q_l(t)$,
$q_v(t)$ and T(t)
	Distribution of CAPE and LNB
	Short and long wave heating rates
	Adjustment time
	Auto-correlation of up-drafts M 
	Auto-correlation of up-drafts A 
	Auto-correlation of up-drafts $m_c$ 
	Auto-correlation of $q_v$ 
	Auto-correlation of $q_l$ 
	Auto-correlation of $T$ 
	 CAPE auto-correlation 
	Spatio-temporal delayed correlation function
	Information transport in $A_u$
	Information transport in $M_u$
	Information transport in $W_u$
	Mean characteristics 
	$langle N
angle $ and $langle sigma _c
angle $
	Fat tails of marginal PDF of up-draft area coverage
	Altitude variability of total Mass flux PDF
	 P(M,z)
	P(M,z)

	P(M,z)
	Mass flux variance
	Mass flux Skewness
	Clustering degree
	Clustering I
	Clustering II
	Summary

