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Classical Forebears

Arithmetic objects from characteristic 0

@ The multiplicative group and exp(z)
@ Elliptic curves and elliptic functions

@ Abelian varieties
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The multiplicative group
We have the usual exact sequence of abelian groups

exp

0 —27iZ — C = C* =0,

where

[e.9]

em(z) = > = < o[l

i=0
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The multiplicative group
We have the usual exact sequence of abelian groups

exp

0 —27iZ — C = C* =0,

where

exp(z) = Y % € QllZ])
i=0
For any n € Z,

exp

C——C*
z»—>nzi lx.—»x”
exp
C——C*

which is simply a restatement of the functional equation

exp(nz) = exp(2)".
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Roots of unity

Torsion in the multiplicative group

The n-th roots of unity are defined by

pn={¢eC*|("=1} = {exp(2ria/n) | ac Z}

o Gal(Q(pn)/Q) = (Z/nZ)*.

@ Kronecker-Weber Theorem: The cyclotomic fields Q(u) provide
explicit class field theory for Q.

@ For ¢ € up,

ori
Iog(g):FTIa, 0<a<n
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Elliptic curves over C

Smooth projective algebraic curve of genus 1.
E:y?=4x+ax+b, abeC

E(C) has the structure of an abelian group through the usual
chord-tangent construction.
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Weierstrass uniformization

There exist wq, wo € C, linearly independent over R, so that if we
consider the lattice

N = Zwq + Zwo,
then the Weierstrass g-function is defined by

=3+ 3 (e a2

w
weN
w#0

The function p(z) has double poles at each point in A and no other
poles.
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We obtain an exact sequence of abelian groups,
0—A—C ™5 E@C) -0,

where
expe(2) = (p(2), ¢'(2))-
with commutative diagram

where [n]P is the n-th multiple of a point P on the elliptic curve E.
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Periods of E

How do we find wy and w»?

An elliptic curve E,
E:y>?=4x3+ax+b, abeC,
has the geometric structure of a torus in P?(C). Let
V1,72 € Hi(E,Z)

be generators of the homology of E.
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Periods of E

How do we find wy and w»?

An elliptic curve E,
E:y>?=4x3+ax+b, abeC,
has the geometric structure of a torus in P?(C). Let
V1,72 € Hi(E, Z)
be generators of the homology of E.

Then we can choose

/ ax / ax
wy = , Wo = .
1 + V4x3+ax+b ? 1w V4x3 +ax+b
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Quasi-periods of E

@ The differential dx/y on E generates the space of holomorphic
1-forms on E (differentials of the first kind).

@ The differential x dx/y generates the space of differentials of the
second kind (differentials with poles but residues of 0).
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Quasi-periods of E

@ The differential dx/y on E generates the space of holomorphic
1-forms on E (differentials of the first kind).

@ The differential x dx/y generates the space of differentials of the
second kind (differentials with poles but residues of 0).

@ We set

_/ X dx _/ X dx
n VA3t ax+ b’ G v Vax3+ax+ b’

and 7, 1o are called the quasi-periods of E.
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Quasi-Periods as Periods of Extensions

11, o arise as special values of the Weierstrass ¢-function because of
the way ( is involved in the exponential functions of extensions of E by

Ga.
For ¢ € C, the function of two variables

(z.1) — (p(2),¢/(2), t + c¢(2))
is the exponential function of a group extension G of E by Gg:
0—-Ga—G—E—O.
Its periods are of the form (w, —cn), since ((w/2) = n/2.

When ¢ = 0, the extension splits: G = E x Ga.
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Period matrix of E

@ The period matrix of E is the matrix

P = |:LU1 771] ]
w2 12

It provides a natural isomorphism

Hiing (E, C) = Hig(E, C).

sing
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Period matrix of E

@ The period matrix of E is the matrix

P = |:LU1 771:| ]
w2 12

It provides a natural isomorphism
Hiing (E, C) = Hig(E, C).

sing

@ Legendre Relation: From properties of elliptic functions, the
determinant of P is

WiT)o — WatH = +27i.
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Abelian varieties

Higher dimensional analogues of elliptic curves

@ An abelian variety A over C is a smooth projective variety that is
also a group variety.

@ Elliptic curves are abelian varieties of dimension 1.
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Abelian varieties

Higher dimensional analogues of elliptic curves

@ An abelian variety A over C is a smooth projective variety that is
also a group variety.

@ Elliptic curves are abelian varieties of dimension 1.

@ Much as for G, and elliptic curves, an abelian variety of
dimension d has a uniformization,

c? / A= A(C),

where A is a discrete lattice of rank 2d.
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The period matrix of an abelian variety

Let A be an abelian variety over C of dimension d.

@ As in the case of elliptic curves, there is a natural isomorphism,
Hs1ing(A7 (C) = H];R(Aa C):

given by period integrals, whose defining matrix P is called the
period matrix of A.
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The period matrix of an abelian variety

Let A be an abelian variety over C of dimension d.

@ As in the case of elliptic curves, there is a natural isomorphism,
Hs1ing(A7 (C) = H];R(Aa C)7

given by period integrals, whose defining matrix P is called the
period matrix of A.

@ We have
P = [w,-j

77ij] € Matyq(C),

where 1 <j<2d,1<j<d.
@ The wj's provide coordinates for the period lattice A.
@ The n;’s occur in periods of extensions of A by Ga.
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Analogues for Function Fields

@ Function field notation

@ Drinfeld modules

» The Carlitz module
» Drinfeld modules

@ t-modules (higher dimensional Drinfeld modules)
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Analogues for Function Fields

@ Function field notation

@ Drinfeld modules

» The Carlitz module
» Drinfeld modules

@ t-modules (higher dimensional Drinfeld modules) & t-motives
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Function fields

Let p be a fixed prime; g a fixed power of p.

A= Fq[@] — Z
k :=TFq(0) — Q
k — @
ko =Fq((1/0) — R
Co = @ — C

f
[floo = % — ||
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Twisted polynomials

@ Let F: Co — C4 be the g-th power Frobenius map: F(x) = x9.

@ For a subfield Fq € K C C, the ring of twisted polynomials over
Kis
K[F] = polynomials in F with coefficients in K,

subject to the conditions

Fc=ciF, VceK.
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Twisted polynomials

@ Let F: Co, — C be the g-th power Frobenius map: F(x) = x9.
@ For a subfield F; C K C C, the ring of twisted polynomials over

Kis
K[F] = polynomials in F with coefficients in K,

subject to the conditions
Fc=ciF, VceK.
@ In this way,
K[F] = {F4-linear endomorphisms of K*}.
Forxe Kand ¢ = ap+ a1F +--- + a,F" € K[F], we write

d(x) = apx + ayx9+ - - + ax9.
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Drinfeld modules

Function field analogues of G, and elliptic curves

Let Fq[f] be a polynomial ring in t over F.

Definition

A Drinfeld module over is an F4-algebra homomorphism,
P IE?q[t] = (COO[F]’

such that
p(t)y=0+aF+-- - +aF"
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Drinfeld modules

Function field analogues of G, and elliptic curves

Let Fq[f] be a polynomial ring in t over F.

Definition

A Drinfeld module over is an F4-algebra homomorphism,
P IFQ[I‘] s (COO[F]’

such that
p(t)=0+aF+---+aF".

@ p makes C, into a F4[f]-module in the following way:
fsx:=p(f)(x), VFfeTqt],x € Cu.

e Ifay,...,ar € K C Cy, we say pis defined over K.
@ When a, # 0, r is called the rank of p.
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The Carlitz module

The analogue of G,

Define a particular Drinfeld module C : F4[t] — Co[F] by
C(t):=0+F.
Thus, for any x € C,

C(t)(x) = o0x + x9.
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Carlitz exponential

Set 4
z9

eXpC(Z) =Z+ Z eql )(qu _ 9q) . (qu _ gq'”)'

@ expc : C, — C is entire, surjective, and Fg-linear.
@ Functional equation:

expc(0z) = O expc(z) + expp(2)9,
expc(f(0)z) = C(f)(expc(2)), VI(t) € Fqlt].
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Carlitz uniformization and the Carlitz period

We have a commutative diagram of F4[f]-modules,

expe
Coo —=Cy

z»—»02l
€Xpe

Coo —=Cx

lXHﬁx+xq
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Carlitz uniformization and the Carlitz period

We have a commutative diagram of F4[f]-modules,

expe
Coo —* Cx

z»—>02l
€Xpe

Coo —* Cx

lx»—>o9x+x‘7

The kernel of exp(2) is

ker(expg(2)) = Fol0lq.

where
00 \—1
1 _q
mq=0"V=0](1-0") .
i=1
BIRS 2009 (Penn State) Introduction to Drinfeld Modules and t-Module September 28, 2009

21/36



Wade’s result

Thus we have an exact sequence of F4[f]-modules,

expe

0 — Fg[f]mrg — Coo — Cx — 0.
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Wade’s result

Thus we have an exact sequence of F4[f]-modules,

0 — Fq[f]mg — Coo 2° Cye — 0.

Theorem (Wade 1941)

The Carlitz period 74 is transcendental over k. J

BIRS 2009 (Penn State) Introduction to Drinfeld Modules and t-Module September 28, 2009 22/36



Torsion for the Carlitz module

Theorem (Carlitz-Hayes)

Torsion of the Carlitz module provides explicit class field theory over
Fq(0).
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Drinfeld modules of rank r

@ Suppose p : Fg[t] — k[F] is a rank r Drinfeld module defined over
k by
p(t)y=0+aF+---+aF".

@ Then there is an unique, entire, F4-linear function
exp, : Coo — Cu,

so that
exp,(f(0)z) = p(f)(exp,(2)), Vf e Fqt].
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Periods of Drinfeld modules of rank r

@ Furthermore, there are wyq,...,wr € C so that
ker(exp,(2)) = Fg[0lwy + - - + Fg[f]wr =: A,

is a discrete Fg[6]-submodule of C, of rank r.
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Periods of Drinfeld modules of rank r

@ Furthermore, there are wyq,...,wr € C so that
ker(exp,(2)) = Fg[0lwy + - - + Fg[f]wr =: A,

is a discrete Fg4[f]-submodule of C, of rank r.
@ Chicken vs. Egg:

exp,(2) =z [] < )

0#weN

@ Again we have a uniformizing exact sequence of Fq[t]-modules

0—-AN—-Cy (C — 0.
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Riemann-Legendre Relations

Quasi-periods: Quasi-periods 71, ...,nr € Cy for p arise in periods of
extensions of p by Ga,.

Legendre relation: When r = 2, w2 — wany = (mq for some ¢ € Fy.

BIRS 2009 (Penn State) Introduction to Drinfeld Modules and t-Module September 28, 2009 26/36



t-modules (Anderson)

Higher dimensional Drinfeld modules

@ A t-module A of dimension d is a pair (A, G) consisting of an
Fq-linear homomorphism,

A : Fq[t] — Endp, (CZ) = Maty(Coo[F]),

such that
A(t)=01d+ N + agF + --- a,F",

where N € Maty(Cy) is nilpotent.
@ Thus CZ is given the structure of an Fg4[t]-module via

fxx:=A(f)(x), VFfeTg[t], xeCZ.
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Exponential functions of t-modules

@ There is a unique entire exp, : C4 — C% so that
exp,((01d + N)z) = A(t)(expa(2)).
@ If exp, is surjective, we have an exact sequence
0—A—Cd rcd o,

where A is a discrete Fg[t]-submodule of CZ.
@ Ais called the period lattice of A.

@ Quasi-periods are defined via periods of extensions by copies of
the additive group.
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Remarks on t-modules

@ When A(t) € k, we say that the t-module is defined over k.
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Remarks on t-modules

@ When A(t) € k, we say that the t-module is defined over k.
@ In that case, exp, has coefficients from k.

Subtleties
@ Surjectivity of exponential function not assured,
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Remarks on t-modules

@ When A(t) € k, we say that the t-module is defined over k.
@ In that case, exp, has coefficients from k.

Subtleties
@ Surjectivity of exponential function not assured, but here posited.

@ We do not have a product expansion for exp, or indeed any series
expansion in terms of A.
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Remarks on t-modules

@ When A(t) € k, we say that the t-module is defined over k.
@ In that case, exp, has coefficients from k.

Subtleties
@ Surjectivity of exponential function not assured, but here posited.

@ We do not have a product expansion for exp, or indeed any series
expansion in terms of A.

@ Exponential function does not always completely determine
t-module
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Easiest examples of t-modules

@ Direct sums of t-modules, in particular Drinfeld modules
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Easiest examples of t-modules

@ Direct sums of t-modules, in particular Drinfeld modules

@ Extensions of {-modules by G, (De Rham cohomology controls
how much new stuff can be obtained this way.)
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Easiest examples of t-modules

@ Direct sums of t-modules, in particular Drinfeld modules

@ Extensions of {-modules by G, (De Rham cohomology controls
how much new stuff can be obtained this way.)

@ Tensor products of t-modules
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A morphism © between two t-modules (A4, Gg‘) and (Ao, G?) is a
matrix of twisted polynomials © € Matg, ., (C[F]) such that

OA(t) = As(1)O.

An isogeny is a morphism when d; = d> and the kernel of © is finite.
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t-Motives (Anderson)

Let Co[t, F] := Coo[F][t], the ring of polynomials in the commuting
variable t over the non-commuting ring C.[F]. A t-motive M is a left
Cwo|[t, F]-module which is free and finitely generated as a
Cw[F]-module and for which there is an ¢ € N with

(t—0)(M/FM) = {0},

Morphisms are morphisms of left Co[t, F]-modules.
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Motives from Modules

Every t-module (A, GY) gives rise to a unique t-motive over C., Vviz.
M :=Hom{ (G§,Ga),

the module of [F4-linear morphisms of algebraic groups. The action of
Cwolt, F] is given by

(ct',m) — como A(t).

Projections on the d coordinates give a C..[F]-basis for M,
d =rankc_ ;] M, and £ need not be taken greater than d.
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Modules from Motives

A t-motive M has a C[F]-basis my, ..., my which we can use to
express the t-action via a matrix A(t) € Maty(Coo[F])-

This is compatible with the above because, if we represent arbitrary
me M as

mH my
m=(ki,....kq) | * | =k]| :
my mqy
gives according to the commutativity of t with elements of C,[F], that,
with a € L[F],

my my m4
at-k| @ | =ak-t] : | =akA(?)
Mgy mgy Mgy
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Theorem (Anderson)

The above correspondence between t-modules and t-motives gives an
anti-equivalence of categories.
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