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Classical Forebears
Arithmetic objects from characteristic 0

The multiplicative group and exp(z)

Elliptic curves and elliptic functions

Abelian varieties
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The multiplicative group
We have the usual exact sequence of abelian groups

0→ 2πiZ→ C exp→ C× → 0,

where

exp(z) =
∞∑

i=0

z i

i!
∈ Q[[z]].

For any n ∈ Z,

C
z 7→nz

��

exp // C×

x 7→xn

��
C

exp // C×

which is simply a restatement of the functional equation

exp(nz) = exp(z)n.
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Roots of unity
Torsion in the multiplicative group

The n-th roots of unity are defined by

µn :=
{
ζ ∈ C× | ζn = 1

}
=

{
exp

(
2πia/n

)
| a ∈ Z

}
Gal(Q(µn)/Q) ∼= (Z/nZ)×.
Kronecker-Weber Theorem: The cyclotomic fields Q(µn) provide
explicit class field theory for Q.
For ζ ∈ µn,

log(ζ) =
2πia

n
, 0 ≤ a < n.
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Elliptic curves over C

Smooth projective algebraic curve of genus 1.

E : y2 = 4x3 + ax + b, a, b ∈ C

E(C) has the structure of an abelian group through the usual
chord-tangent construction.
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Weierstrass uniformization

There exist ω1, ω2 ∈ C, linearly independent over R, so that if we
consider the lattice

Λ = Zω1 + Zω2,

then the Weierstrass ℘-function is defined by

℘Λ(z) =
1
z2 +

∑
ω∈Λ
ω 6=0

(
1

(z − ω)2 −
1
ω2

)
.

The function ℘(z) has double poles at each point in Λ and no other
poles.
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We obtain an exact sequence of abelian groups,

0→ Λ→ C
expE→ E(C)→ 0,

where
expE(z) = (℘(z), ℘′(z)).

with commutative diagram

C

z 7→nz
��

expE// E(C)

P 7→[n]P
��

C
expE// E(C)

where [n]P is the n-th multiple of a point P on the elliptic curve E .
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Periods of E
How do we find ω1 and ω2?

An elliptic curve E ,

E : y2 = 4x3 + ax + b, a, b ∈ C,

has the geometric structure of a torus in P2(C). Let

γ1, γ2 ∈ H1(E , Z)

be generators of the homology of E .

Then we can choose

ω1 =

∫
γ1

dx√
4x3 + ax + b

, ω2 =

∫
γ2

dx√
4x3 + ax + b

.
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Quasi-periods of E

The differential dx/y on E generates the space of holomorphic
1-forms on E (differentials of the first kind).
The differential x dx/y generates the space of differentials of the
second kind (differentials with poles but residues of 0).
We set

η1 =

∫
γ1

x dx√
4x3 + ax + b

, η2 =

∫
γ2

x dx√
4x3 + ax + b

,

and η1, η2 are called the quasi-periods of E .
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Quasi-Periods as Periods of Extensions

η1, η2 arise as special values of the Weierstrass ζ-function because of
the way ζ is involved in the exponential functions of extensions of E by
Ga.
For c ∈ C, the function of two variables

(z, t) 7−→ (℘(z), ℘′(z), t + cζ(z))

is the exponential function of a group extension G of E by Ga:

0→ Ga → G→ E → 0.

Its periods are of the form (ω,−cη), since ζ(ω/2) = η/2.

When c = 0, the extension splits: G = E ×Ga.
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Period matrix of E

The period matrix of E is the matrix

P =

[
ω1 η1
ω2 η2

]
.

It provides a natural isomorphism

H1
sing(E , C) ∼= H1

DR(E , C).

Legendre Relation: From properties of elliptic functions, the
determinant of P is

ω1η2 − ω2η1 = ±2πi .

BIRS 2009 (Penn State) Introduction to Drinfeld Modules and t-Modules September 28, 2009 12 / 36



Period matrix of E

The period matrix of E is the matrix

P =

[
ω1 η1
ω2 η2

]
.

It provides a natural isomorphism

H1
sing(E , C) ∼= H1

DR(E , C).

Legendre Relation: From properties of elliptic functions, the
determinant of P is

ω1η2 − ω2η1 = ±2πi .

BIRS 2009 (Penn State) Introduction to Drinfeld Modules and t-Modules September 28, 2009 12 / 36



Abelian varieties
Higher dimensional analogues of elliptic curves

An abelian variety A over C is a smooth projective variety that is
also a group variety.
Elliptic curves are abelian varieties of dimension 1.
Much as for Gm and elliptic curves, an abelian variety of
dimension d has a uniformization,

Cd /
Λ ∼= A(C),

where Λ is a discrete lattice of rank 2d .
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The period matrix of an abelian variety

Let A be an abelian variety over C of dimension d .

As in the case of elliptic curves, there is a natural isomorphism,

H1
sing(A, C) ∼= H1

DR(A, C),

given by period integrals, whose defining matrix P is called the
period matrix of A.
We have

P =
[
ωij

∣∣∣ ηij

]
∈ Mat2d(C),

where 1 ≤ i ≤ 2d , 1 ≤ j ≤ d .
The ωij ’s provide coordinates for the period lattice Λ.
The ηij ’s occur in periods of extensions of A by Ga.
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Analogues for Function Fields

Function field notation

Drinfeld modules
I The Carlitz module
I Drinfeld modules

t-modules (higher dimensional Drinfeld modules) & t-motives
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Function fields

Let p be a fixed prime; q a fixed power of p.

A := Fq[θ] ←→ Z

k := Fq(θ) ←→ Q

k ←→ Q

k∞ := Fq((1/θ)) ←→ R

C∞ := k̂∞ ←→ C

|f |∞ = qdeg f ←→ | · |
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Twisted polynomials

Let F : C∞ → C∞ be the q-th power Frobenius map: F (x) = xq.
For a subfield Fq ⊆ K ⊆ C∞, the ring of twisted polynomials over
K is

K [F ] = polynomials in F with coefficients in K ,

subject to the conditions

Fc = cqF , ∀ c ∈ K .

In this way,

K [F ] ∼= {Fq-linear endomorphisms of K +}.

For x ∈ K and φ = a0 + a1F + · · ·+ ar F r ∈ K [F ], we write

φ(x) := a0x + a1xq + · · ·+ ar xqr
.
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Drinfeld modules
Function field analogues of Gm and elliptic curves

Let Fq[t ] be a polynomial ring in t over Fq.

Definition
A Drinfeld module over is an Fq-algebra homomorphism,

ρ : Fq[t ]→ C∞[F ],

such that
ρ(t) = θ + a1F + · · ·+ ar F r .

ρ makes C∞ into a Fq[t ]-module in the following way:

f ∗ x := ρ(f )(x), ∀f ∈ Fq[t ], x ∈ C∞.

If a1, . . . , ar ∈ K ⊆ C∞, we say ρ is defined over K .
When ar 6= 0, r is called the rank of ρ.
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The Carlitz module
The analogue of Gm

Define a particular Drinfeld module C : Fq[t ]→ C∞[F ] by

C(t) := θ + F .

Thus, for any x ∈ C∞,

C(t)(x) = θx + xq.
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Carlitz exponential

Set

expC(z) := z +
∞∑

i=1

zqi

(θqi − θ)(θqi − θq) · · · (θqi − θqi−1)
.

expC : C∞ → C∞ is entire, surjective, and Fq-linear.
Functional equation:

expC(θz) = θ expC(z) + expC(z)q,

expC(f (θ)z) = C(f )(expC(z)), ∀f (t) ∈ Fq[t ].
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Carlitz uniformization and the Carlitz period

We have a commutative diagram of Fq[t ]-modules,

C∞
z 7→θz

��

expC // C∞
x 7→θx+xq

��
C∞

expC // C∞

The kernel of expC(z) is

ker(expC(z)) = Fq[θ]πq,

where

πq = θ
q−1
√
−θ

∞∏
i=1

(
1− θ1−qi

)−1
.
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Wade’s result

Thus we have an exact sequence of Fq[t ]-modules,

0→ Fq[θ]πq → C∞
expC→ C∞ → 0.

Theorem (Wade 1941)

The Carlitz period πq is transcendental over k.
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Torsion for the Carlitz module

Theorem (Carlitz-Hayes)
Torsion of the Carlitz module provides explicit class field theory over
Fq(θ).
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Drinfeld modules of rank r

Suppose ρ : Fq[t ]→ k [F ] is a rank r Drinfeld module defined over
k by

ρ(t) = θ + a1F + · · ·+ ar F r .

Then there is an unique, entire, Fq-linear function

expρ : C∞ → C∞,

so that
expρ(f (θ)z) = ρ(f )(expρ(z)), ∀f ∈ Fq[t ].
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Periods of Drinfeld modules of rank r

Furthermore, there are ω1, . . . , ωr ∈ C∞ so that

ker(expρ(z)) = Fq[θ]ω1 + · · ·+ Fq[θ]ωr =: Λ,

is a discrete Fq[θ]-submodule of C∞ of rank r .
Chicken vs. Egg:

expρ(z) = z
∏

06=ω∈Λ

(
1− z

ω

)
.

Again we have a uniformizing exact sequence of Fq[t ]-modules

0→ Λ→ C∞
expρ→ C∞ → 0.
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Riemann-Legendre Relations

Quasi-periods: Quasi-periods η1, . . . , ηr ∈ C∞ for ρ arise in periods of
extensions of ρ by Ga.

Legendre relation: When r = 2, ω1η2 − ω2η1 = ζπq for some ζ ∈ F×q .
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t-modules (Anderson)
Higher dimensional Drinfeld modules

A t-module A of dimension d is a pair (A, Gd
a) consisting of an

Fq-linear homomorphism,

A : Fq[t ]→ EndFq (Cd
∞) ∼= Matd(C∞[F ]),

such that
A(t) = θId + N + a0F + · · ·ar F r ,

where N ∈ Matd(C∞) is nilpotent.
Thus Cd

∞ is given the structure of an Fq[t ]-module via

f ∗ x := A(f )(x), ∀f ∈ Fq[t ], x ∈ Cd
∞.
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Exponential functions of t-modules

There is a unique entire expA : Cd
∞ → Cd

∞ so that

expA((θId + N)z) = A(t)(expA(z)).

If expA is surjective, we have an exact sequence

0→ Λ→ Cd
∞

expA→ Cd
∞ → 0,

where Λ is a discrete Fq[t ]-submodule of Cd
∞.

Λ is called the period lattice of A.
Quasi-periods are defined via periods of extensions by copies of
the additive group.
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Remarks on t-modules

When A(t) ∈ k , we say that the t-module is defined over k .
In that case, expA has coefficients from k .

Subtleties
Surjectivity of exponential function not assured, but here posited.
We do not have a product expansion for expA or indeed any series
expansion in terms of Λ.
Exponential function does not always completely determine
t-module
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Easiest examples of t-modules

Direct sums of t-modules, in particular Drinfeld modules
Extensions of t-modules by Ga (De Rham cohomology controls
how much new stuff can be obtained this way.)
Tensor products of t-modules
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A morphism Θ between two t-modules (A1, Gd1
a ) and (A2, Gd2

a ) is a
matrix of twisted polynomials Θ ∈ Matd2×d1(C∞[F ]) such that

ΘA1(t) = A2(t)Θ.

An isogeny is a morphism when d1 = d2 and the kernel of Θ is finite.
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t-Motives (Anderson)

Let C∞[t , F ] := C∞[F ][t ], the ring of polynomials in the commuting
variable t over the non-commuting ring C∞[F ]. A t-motive M is a left
C∞[t , F ]-module which is free and finitely generated as a
C∞[F ]-module and for which there is an ` ∈ N with

(t − θ)`(M/FM) = {0},

Morphisms are morphisms of left C∞[t , F ]-modules.
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Motives from Modules

Every t-module (A, Gd
a) gives rise to a unique t-motive over C∞, viz.

M := Homq
C∞(Gd

a , Ga),

the module of Fq-linear morphisms of algebraic groups. The action of
C∞[t , F ] is given by

(ct i , m) 7→ c ◦m ◦ A(t i).

Projections on the d coordinates give a C∞[F ]-basis for M,
d = rankC∞[F ] M, and ` need not be taken greater than d .
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Modules from Motives

A t-motive M has a C∞[F ]-basis m1, . . . , md which we can use to
express the t-action via a matrix A(t) ∈ Matd(C∞[F ]).
This is compatible with the above because, if we represent arbitrary
m ∈ M as

m = (k1, . . . , kd)

m1
...

md

 = k

m1
...

md

 ,

gives according to the commutativity of t with elements of C∞[F ], that,
with a ∈ L[F ],

at · k

m1
...

md

 = ak · t

m1
...

md

 = akA(t)

m1
...

md


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Theorem (Anderson)
The above correspondence between t-modules and t-motives gives an
anti-equivalence of categories.
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