Theories without tree property of the second kind (*NTP*₂)

Artem Chernikov

Humboldt Universität zu Berlin

"Stable methods in unstable theories" workshop at Banff 9 February 2009

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Dividing patterns

We say that $(\phi_i(x, y_i), I_i : i < \kappa)$ with $I_i = (a_j^i : j < \omega)$ is a dividing pattern of depth κ if:

- for each $i < \kappa$: $\bigwedge_{j < \omega} \phi_i(x, a_j^i)$ is k_i -inconsistent for some $k_i < \omega$

- for each $f \in \omega^{\kappa}$: $\bigwedge_{i < \kappa} \phi_i(x, a^i_{f(i)})$ is consistent.

 $\kappa_{inp}(T)$ and NTP_2

 $\kappa_{inp}(T) :=$ supremum of all possible depths of dividing patterns or ∞ if it does not exist.

T is **strong** if there is no dividing pattern of infinite depth

T is *NTP*₂ if $\kappa_{inp}(T) < \infty$ (equivalently there is no dividing pattern of infinite depth with $\phi = \phi_i$ and $k = k_i$ for all *i*.

(日) (日) (日) (日) (日) (日) (日)

We say that an array $I_{\in O}$ is indiscernible if its rows are mutually indiscernible, that is I_i is indiscernible over $I_{\neq i}$.

Multi-dimensional "Erdös-Rado":

For every $c \in \mathbb{M}$ and cardinal κ there is some λ such that for any array $I_{< n}$, $I_i = (a_j^i : j \in O)$ with $|O| \ge \kappa$ (and $|a_j^i| \le \kappa$) there is some *c*-indiscernible array $J_{< n}$, $J_i = (b_j^i : j < \omega)$ and such that

for each $m < \omega$: $b_{<m}^0 b_{<m}^1 \dots b_{<m}^n \equiv_c a_{\in k_1}^1 a_{\in k_2}^2 \dots a_{\in k_n}^n$ for some $k_1, k_2, \dots, k_n \subseteq O$

Indisernible dividing patterns

So when computing $\kappa_{inp}(T)$ it is enough to look only at indiscernible dividing patterns. Besides we can assume that rows are 2-inconsistent (by changing ϕ_i 's at worst)

Place in the classification hierarchy

- NIP ⇒ NTP₂ (and actually NIP = NTP₂ + "bounded non-forking")
- 2. simple \implies *NTP*₂ (and actually simple = *NTP*₂ + *NTP*₁)
- 3. strong $\implies NTP_2$ (and actually is a uniform version of it, "super NTP_2 ")

(ロ) (同) (三) (三) (三) (○) (○)

- 4. strong + NIP = strongly dependent
- 5. strong + simple = every type has finite weight

Some examples: *NTP*₂

- Of course, reducts and interpretations preserve NTP₂
- ► T₁, T₂ are NTP₂ ⇒ T₁ × T₂ is NTP₂ (so e.g. product of simple and dependent groups)
- Chatzidakis-Pillay expansions by random predicate preserve NTP₂
- The main candidate (unfortunately no proof yet) VFA₀

(日) (日) (日) (日) (日) (日) (日)

Some examples: not everything is NTP₂

triangle free random graph, atomless boolean algebra, etc

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- ω-free PAC fields
- any non-simple NTP₁ theory

Enough to check formulas in a single variable

Folklore (?): If *T* is unstable then there is a formula in one variable with *the order property*.

Folklore (?): *T* is not simple if and only if there is a formula in one variable with the *tree property*.

Theorem of Shelah: If *T* has *IP* then already some formula in a single variable does.

Theorem: If *T* has TP_2 then there is some formula in a single variable with TP_2 .

Why?: rotation of indiscernibles and arrays

- We say that two indiscernible sequences *I* and *J* are **rotation-equivalent** if $I \equiv_a J$ where *a* is the first element of the sequences.

- Two indiscernible arrays $I_{\in O}$ and $J_{\in O}$ are **rotation-equivalent** if $I_{\in O} \equiv_{a_{i \in O}} J_{\in O}$ where a_i is the first element of I_i

- Two indiscernible arrays $I_{\in O}$ and $J_{\in O}$ (with *O* endless infinite) are **almost rotation-equivalent** if there is some $h \in O$ such that $I_{>h}$ and $J_{>h}$ are rotation-equivalent.

Why?: lifting indiscernibility by rotation

Define $\kappa_{inp}^n(T)$ to be the maximal depth of dividing patterns $(\phi(x, y_i), l_i)$ with $|x| \le n$.

Lemma: TFAE

- $\kappa_{inp}^n(T) \leq \kappa$

- $(*)_n^{\kappa}$: If $I_{<\kappa^+}$ is an indiscernible array and $c \in \mathbb{M}$, $|c| \le n$ then we can make it indiscernible over c by almost-rotation.

Question: Do we really need rotation? Maybe its possible to find an actual subarray indiscernible over *c*?

One variable is enough

Its easy to see that $(*)_1^{\kappa} \implies (*)_2^{\kappa} \implies \dots \implies (*)_{\kappa}^{\kappa}$ and so we can answer a question of Shelah from the book:

Theorem:
$$\kappa_{inp}(T) = \kappa_{inp}^{1}(T)$$

and so in paticular

- TP2 is always witnessed by some formula in a single variable

(日) (日) (日) (日) (日) (日) (日)

- *strong* = *strong*¹
- new proof for strongly dependent = strongly dependent¹

Forking in NTP₂

We say that $a \bigsqcup_{c}^{ist} b$ if there is a global type $p \supseteq tp(a/bc)$ invariant over *c* and for each $B \supset bc$ if $a' \models p|_B$ then $B \bigsqcup_{c}^{d} a'$ (so invariant non-co-dividing)

Some facts from [CheKap]: Let *T* be *NTP*₂. Then

- \bigcup_{M}^{ist} exists over models, that is $a \bigcup_{M}^{ist} \emptyset$ for each *a* and *M*.
- Any \int_{-ist}^{ist} -free sequence witnesses dividing.
- $\bigcup^{f} = \bigcup^{d}$ over any extension base.
- ► *T* is *NIP* iff it is *NTP*₂ and non-forking is bounded.

Pseudo-local character

We say that dividing in T has **pseudo-local character** w.r.t. \bigcup if

Let $p \in S(A)$, $A_0 \subseteq A$. Then there is some $A' \subseteq A$, $|A'| \leq |T|$ such that

for each $B \subseteq A$: $B \bigcup_{A_0} A' \implies p|_B$ does not divide over A_0A' .

Of course local character (and so simplicity) implies pseudo-local character w.r.t. any U.

Strong pseudo-local character is when we can find finite A'.

Pseudo-local character characterizes NTP₂

Theorem: The following are equivalent

- T is NTP₂
- dividing has pseudo-local character w.r.t. $igcup^{ist}$
- If $(a_i : i < |T|^+)$ is an $\bigcup_{a_i}^{ist}$ -free sequence over *A* and *b* some tuple then $b \bigcup_{a}^{d} a_i$ for some (equivalently almost all) $i < |T|^+$

Analogously strongness is equivalent to strong pseudo-local character.

Question: Can we replace \int_{-ist}^{ist} by something weaker? **Philosofical question:** Need to work with two different relations – problem or feature?

Pseudo-local character: example

Consider $M \models DLO$ and $p \in S(M)$. So *p* corresponds to some cut. If, say, cofinality is high on both sides then local character fails for *p*. But let A_0 be some small subset of *M* and let (a, b) be some interval containing this cut and not containing anything from A_0 . Set $A' = \{a, b\}$.

(日) (日) (日) (日) (日) (日) (日)

So essentially pseudo-local character means that local character holds in "large/generic pieces".

Amalgamation of types

Fact (Kim): If T has TP_1 then the independence theorem for Lascar strong types fails. (and modulo set-theoretic assumption fails over models).

(ロ) (同) (三) (三) (三) (○) (○)

So is there anything to say about NTP₂?

Preindependence relations with amalgamation: setting

Let $(p_i(x, a_i) : i \in O)$ be a familiy of \bigcup -free types over M extending some $p \in S(M)$.

We say that it is **amalgamable** if $\bigwedge_{i \in O} p(x, a_i)$ is consistent and \bigcup -free over *M*.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

In this terms independence over models \iff we can amalgamate when a_i is an *M*-independent set.

Generic amalgamation / Chain condition

We say that $\ \ has$ **generic amalgamation** over models if for any family of $\ \ \$ -free types $p_i(x, a_i)$ over *M* large enough ($\ge 2^{2^{|M|}}$) at least two of them amalgamate.

Observation (Adler, Casanovas): TFAE

- 1. igcup has generic amalgamation
- 2. \bigcup has amalgamation if a_i 's form an indiscernible sequence over M
- 3. Let $a \bigsqcup_{b} I$ with *I* a *b*-indiscernible sequence. Then there is $a' \equiv_{b} a$ and such that $a' \bigsqcup_{b} I$, *I* is *a'b*-indiscernible.

Generic amalgamation in NTP₂?

Remark: 1) \bigcup satisfies independence theorem \implies it has generic amalgamation.

2) | is bounded \implies it has generic amalgamation,

so both in simple and dependent theories non-forking has generic amalgamation, but for orthogonal reasons.

Conjecture: \bigcup^{f} satisfies generic amalgamation over models in *NTP*₂?

・ロト・日本・日本・日本・日本

Also, what is known in NTP₁?

Kim-Pillay for simple theories

T is simple if and only if there is a pre-independence relation \bigcup satisfying

- left transitivity, base monotonicity, extension, finite character
- | has local character
- Independence theorem over models

and in this case \bigcup is exactly non-dividing / non-forking.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Let us define a shortcut: $a \bigsqcup_{c}^{\prime} b$ if exists a global type $p \supseteq tp(a/bc)$ invariant over *c* and for each $B \supset bc$ if $a' \models p|_B$ then $B \bigsqcup_{c} a'$.

Theorem: *T* is $NTP_2 \iff$ exists an **invariant** relation \bigcup satisfying

- left transitivity, base monotonicity, finite character
- \bigcup ' satisfies existence over models
- \bigcup has **pseudo-local character** with respect to \bigcup'
- weak generic amalgamation: if $(a_i)_{i < \omega}$ is \bigcup '-free over M and $p(x, a_0)$ is \bigcup -free over M, then $\bigwedge_{i < \omega} p(x, a_i)$ is consistent.

and in this case \bigcup is $\mbox{exactly non-dividing}$ / $\mbox{non-forking}$ when restricted to models

T is strong \iff instead of pseudo-local character we have strong pseudo-local character

T is *NIP* \iff in addition we have

- **boundedness**: for each *M* there are boundedly many global types \bigcup -free over *M*.

(日) (日) (日) (日) (日) (日) (日)

And, of course, T is strongly dependent if we have both.

Questions / research directions

- Groups with NTP₂ (strong) is there anything to say?
- Low NTP₂(strong) theories (include simple low theories and NIP)
- Are there TP₂ theories with bounded non-forking?
- Study (generically-) dependent and (generically-) simple types in NTP₂ (strong) theories. Could there be any decomposition? Simply-dominated types?

(日) (日) (日) (日) (日) (日) (日)