Metastability and NIP

Abelian groups.

NIP assumed throughout.

Haskell, Loeser, Macpherson, Pillay, Simon.

A generically stable measure is a definable measure p(x), such that $p(x) \otimes p(y) = p(y) \otimes q(x)$.

Equivalent forms include: if $a = (a_1, ..., a_n)$, let $f(\phi, a) = |\{i : \phi(a_i))\}|/n$. Then:

For appropriate sequences a^n (in fact, with high probability, an realization of p^n will do),

(fim) $p(\phi(x,b)) = \lim_{n \to \infty} f(\phi, a^n)$

For types, (fim) is Shelah's "majority rule".

Will begin with \hat{V} =generically stable (global) *types* on a definable set V.

 $\widehat{V}(A) =$ elements of \widehat{V} definable over A.

Stability: all types, measures are generically stable. Fundamental theorem: properties of generically stable types, and:

 $\widehat{V} \to S_A(V)$ is bijective, $A = \operatorname{acl}(A)^{eq}$.

In general, $\widehat{V}(A) \to S_A(V)$ injective.

What could replace surjectivity?

In metastable case: consider \hat{V} as fundamental space; find an arbitrary type at the limit of a path on this space.

\widehat{V} as a pro-definable set

The definable $\phi(v, y)$ types on V form a $\bigwedge \bigvee$ definable set. For some $\theta(y, c)$, the type has the form: $\phi(v, y) \iff \theta(y, c)$; and the set of cthat work is \bigwedge -definable.

Iteration is a $\land \lor$ -definable function: $p(x), q(y) \mapsto p(x) \otimes q(y)$.

The definable ϕ -types extending to a generically stable type can always be defined by a bounded Boolean combination of instances (majority rule, fim).

Moreover, the generically stable types can be recognized via: $p(x) \otimes p(y) = p(y) \otimes p(x)$, a \wedge -condition. This removes the \vee .

Example: uniform families of normal subgroups.

A group G is generically stable if it admits a generically stable (left) translation invariant type. In this case, the type is unique.

Let G be a definable group. Let N_i be a family of generically stable normal subgroups. Then there exists a generically stable group containing them all.

Proof. For $p, q \in \hat{V}$, let $p * q = m_*(p \otimes q)$.

p is the generic of a subgroup A(p) iff p * p = p.

We have $A(p) \subseteq A(q)$ iff p * q = q.

Seeking q with q * q = q and $p_i * q = q$, where p_i is the generic of N_i .

6

For any finite subfamily, i_1, \ldots, i_k , take the generic of $N_{i_1} \ldots N_{i_k}$.

Compactness.

Corollary 1. Among the generically stable subgroups, there exists a cofinal uniform family C_t .

Proof. Let A_i be a family of generically stable groups, containing an instance of each $Aut(\mathbb{U})$ -conjugacy class of such groups. Find a generically stable $C = C_e$ containing each A_i , q = tp(e). Then $\{C_t : t \models q\}$ is such a family.

Define $t \leq t'$ if $C_t \leq C_{t'}$; a pro-definable partial ordering.

Results initially obtained in metastable setting. Assuming metastability, Q is Γ -internal. (And with additional conditions, definable.) L(G), the limit group = union of all generically stable subgroups. If G = L(G), say G is limit metastable.

The group structure of L(G) is decomposed into: a partial ordering; and: a uniform family of generically stable groups.

(*) What about G/L(G)?

(**) What happens in C_e , below the generic?

metastability over **Γ**

Let Γ be stably embedded. Assume $\hat{U} = U$ for all definable $U \subset \Gamma^{eq}$.

T is generically stable over Γ if any type in V over A has the form $f_*(q)|A, q$ a type of Γ^* , $f: \Gamma^* \to \hat{V}$ a (Λ)-definable function.

Equivalently: for $c \in V$, $tp(c/A, \Gamma) \in Im(\widehat{V} \to S_A(V)).$

In particular \widehat{V} = definable types $\perp \Gamma$.

This is a notion of "relative stability" (quite different from "stability over a predicate".)

Metastability: in addition, generically stable =

Metastability: in addition, generically stable = stably dominated.

Question: how far are generically stable types from being stably dominated? Is nongenericity caused by a stable relation in a reasonable logic?

Present examples show that Ind-definable equivalence relations must be considered.

Metastability gives a way to impose finite dimensionality conditions. We'll be interested in: Γ o-minimal, stable part of of finite Morley rank. This gives in particular *finite weight* for $p \in \hat{V}$.

This makes it possible to try Zilber's indecomposability. It works in Abelian case.

Note that G/L(G) has no nontrivial generically stable subgroups. By "groupification" lemma 2 below, it has no generically stable types. By generic metastability over Γ , it follows that: (*) G/L(G) is Γ -internal. **Lemma 2.** Let *H* be a piecewise definable, or even piecewise *-definable, Abelian group, pa symmetric definable type of elements of *H*. Assume *H* has *p*-weight < 2n, in the sense that:

Whenever $b \in H$, $(a_1, \ldots, a_{2n}) \models p^{\otimes 2n}$, $a_i \models p|b$ for some i.

Then there exists an ∞ -definable subgroup G of H with generic type $p^{\pm 2n}$. p is contained in a coset of G.

Proof. Let $(a_1, a_2, \ldots, a_{2n}) \models p^{\otimes 2n}$, and let $b = a_1^{-1}a_2 \cdot \ldots \cdot a_{2n}$.

By the weight assumption, $a_i \models p|b$ for some *i*. Since *H* is commutative, $tp(a_1, a_2, \ldots, a_{2n}/b)$ is Sym(n)-invariant, so $a_1 \models p|b$.

Let G be the stabilizer of $p^{\pm 2n}$, and $C = Stab(p^{\mp 2n-1}, p^{\pm 2n})$. Then $a_1^{-1} \in C$,

so $p^{\pm 1}$ is a type of elements of C. It follows that $p^{\pm 2}$ and hence also $p^{\pm 2n}$ is a type of elements of G. Being invariant, it shows G is generically stable.

Question: What about the non-Abelian case? A limit metastable K with $K \setminus G/K$ Γ -internal?

Inside a stably dominated group:

Proposition 3. Let G be a generically stable group. Assume the generic p of G is stably dominated. Then there exists a *-definable stable group \mathfrak{g} , and a *-definable homomorphism $g: G \to \mathfrak{g}$, such that the generics of G are stably dominated via g.

"Groupification of domination"; to be discussed later. If one specifies that \mathfrak{g} is as large as possible, then (g, \mathfrak{g}) are canonical. Let K be the kernel.

(**)

Proposition 4. *K* is limit metastable.

Factoring out L(K) we may assume K is Γ internal. to obtain H with $0 \to K \to G \to \mathfrak{g} \to 0$. Also a map to Γ^{eq} with stable fibers; an almost section $S \to H$. Contradicts domination by $G \to \mathfrak{g}$. Picture: chain of "closed" (generically stable) subgroups, going to ∞ ; for each one a canonical maximal "open" subgroup, with a chain of closed subgroups approaching it; etc.

ACVF, picture with topology.

V has a definable topology (Zariski), with a definable sheaf of functions into Γ_{∞} ($f = \text{val}\phi$, ϕ regular.) Γ_{∞} too has a definable topology (o).

Topology on \widehat{V} : $\{p \in W : f(p) \in U\}$ basic open, with W open in V, U open in Γ_{∞} .

Notions of definable compactness, definable connectedness; \hat{V} definably connected for V a ball (but not the union of two), \hat{V} definably compact for V a closed ball (but not an open ball.)

 \hat{V} admits a definable contraction to a closed subspace, homeomorphic to a subset of Γ_{∞}^{n} .

Question: Contractibility of generically stable groups.

Proof in affine case.

Proposition 5. Let G be a generically stable \wedge - definable subgroup of an affine algebraic group. Then there exists a group scheme \Im over \Im such that $G \cong \Im(\Im)$.

Proof: p the unique translation invariant generically stable type of G; $G \leq H$, Haffine, defined over some $K_0 = (K_0)^a$. Let $R_0 := K_0[H]$ be the affine coordinate ring of H. Define

$$R = \{f \in K_0[G] : (d_p x) \lor \mathsf{al} f(x) \ge \mathsf{0}\}$$

This is an O-subalgebra of R_0 . Show: if $f \in R$, then $f(xy) = \sum g_i(x)h_i(y)$ with $g_i, h_i \in R$; finite generations; a group scheme structure on SpecR. (....)

Identify $g: G \to \mathfrak{g}$ as $G(\mathfrak{O}) \to G(\mathfrak{O}/\mathfrak{M})$ $\mathfrak{M} = \{x : \operatorname{val}(x) > 0\}$ (this works only over a model!)

A chain of ideals of \mathcal{O} , $\mathcal{M}_{\alpha} = \{x : val(x) \geq \alpha\}$.

Obtain a continuous path $p \to 1$, $\alpha \mapsto \ker(G \to \mathfrak{G}(\mathfrak{O}/\mathfrak{M}_{\alpha}))$.

To what extent can we generalize this picture beyond metastability?

```
Generically stable measures , m\hat{V}.
```

The properties of generically stable types generalize in full.

Review 1-3 for measures.

o-minimal Abelian groups: (say $G = \mathbb{R}$) : G/L(G) = maximal definably compact quotient.

L(G) is the union of Ind-definable generically stable groups.

In stable case, fundamental theorem admits two equivalent forms:

a) $\widehat{V}(A) \to S_A(V)$ is bijective, $A = \operatorname{acl}(A)^{eq}$.

(acl, eq developed, in large part, for this statement!)

or,

b) $m\widehat{V}(A) \to mS_A(V)$ is bijective, any A.

In NIP context, even for types in the image of (b), analogue of first approach is not (presently?) available, since going up to A^{bdd} can destroy generic stability.

If p is a type over A, μ the unique generically stable measure μ defined over A and extending p, then μ is the integral over the compact Lascar group of certain invariant types; but these are not generically stable. The notion of domination uses only the measure-0 ideal and not the full measure.

Proposition 3 has been generalized to this setting: a symmetric ideal of ∞ -definable sets with certain definability properties.

A generalization in a different direction replaces the family of stable formulas (or types) with an arbitrary family \mathbb{C} of hyperimaginary sorts. This allows a uniform treatment of compact domination and stable domination.

Let *E* be an inf-definable equivalence relation on *X*, and let $\pi : X \to Y$ be a map with kernel *E*. We define a measure $\pi_*\mu$ on *Y*: *U* is measurable iff $\pi^{-1}(U)$ is μ -measurable; and then $\pi_*\mu(U) = \mu(\pi^{-1}U)$. Similarly, given an ideal \mathcal{I} we define $\pi_*\mathcal{I} = \{U : \pi^{-1}(U) \in \mathcal{I}\}.$

Let \mathcal{C} be a class of hyperdefinable sets.

Definition 6. Let $f : X \to Y = X/E$ and let \mathfrak{I}_Y be an ideal on Y. Then (f, \mathfrak{I}_Y) is \mathfrak{C} - dominating if for any base set A, for \mathfrak{I}_Y -almost every $b \in Y$, all elements of $f^{-1}(b)$ have the same type over $A \cup \mathfrak{C}$. (E) for any $A = \operatorname{acl}(A)$, any type over A extends to an A-invariant type p.

Equivalent to: (1) types over A do not for over A;

(2) elimination of bounded hyperimaginaries = the (compact) Lascar group is profinite = \mathbb{R}/\mathbb{Z} is not a subquotient of $Aut(\mathbb{U}/A)$.

Inductive proof of density of A-definable types in A-topology.

Existence of invariant extensions follows from density, since the set of *A*-invariant types is a closed subspace of $S_x(\mathbb{U})$, so the projection to $S_x(A)$ is closed.

Descent/ non-descent.