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1 summary

This is a report on activities and results of the focused research group meeting
held at BIRS on 2010-06-13 to 26. The participants were Omer Angel, Ander
Holroyd, Gady Kozma, James Martin, Jim Propp (first week), Dan Romik,
Johan Wastlund, David Wilson (second week), and Peter Winkler.

Tho format of the meeting was as follows. Each morning, one or two of the
participants would discuss a few open problems in the broad area of discrete
probability. These led to an open discussion, which continued in the afternoons,
either at the BIRS facilities or occasionally during excursions. While the prob-
lems were broadly spread, some unexpected connections were discovered. The
problems discussed ranged from very specific questions to more vague ideas and
suggested attacks on other problems.

In the second week, the problem exposition component was reduced, and
most of the time was spent pursuing the some promising approaches to solving
the problems. However, some questions also arose later in the meeting, as a
result of discussions.

Over all, the meeting was very successful, over 30 problems were posed and
discussed. Several were solved completely, and significant progress was made on
others. A number of papers are being currently being written as a direct result
of the meeting (two are already complete), and much current research is still
being done. A number of questions are of a very fundamental nature, and the
resulting work is likely to pave the way to additional research in the future.

2 Diadic tilings

A direct outcome of the workshop [2]:

A dyadic tile of order n is any rectangle obtained from the unit square by
n successive bisections by horizontal or vertical cuts. Let each dyadic tile of
order n be available with probability p, independently of the others. We prove
that for p sufficiently close to 1, there exists a set of pairwise disjoint available
tiles whose union is the unit square, with probability tending to 1 as n — oo,
as conjectured by Joel Spencer in 1999. In particular we prove that if p = 7/8,
such a tiling exists with probability at least 1 — (3/4)™. The proof involves a



surprisingly delicate counting argument for sets of unavailable tiles that prevent
tiling. This problem is also related to bootstrap percolation on lamplighter
groups.

3 Avoidance coupling

Another direct outcome [3]:

Two independent random walks on a graph are sure to collide at some time.
However, if the random walks are not independent, it is sometimes possible to
arrange them so that they never collide. As an application, one may envisage
some anti-virus software moving from port to port in a computer system to
check for incursions. It is natural to have such a program implement a random
walk on the ports so as not to be predictable. If another program (possibly with
a different purpose) also does a random walk on the ports, it may be desirable
or even essential to prevent the programs from examining the same port at the
same time.

We show that on the complete graph on n vertices, with or without loops,
there is a Markovian coupling keeping apart 2(n/logn) random walks, taking
turns to move.

4 Tokens on a graph

A problem that gave rise to the avoidance question above: Several tokens are
located on a graph. At each step an adversary selects which one to move, while
trying to avoid collisions asfor as long as possible. Is it possible to find the
optimal strategy and worst locations for the tokens? In particular, does the
worst configuration ever include more than 3 tokens?

This question is related to a number of problems on scheduling of random
walks [4, 6, 5].

5 Random fault trees

Consider binary tree of depth n, and place randomly an and-gate or an or-gate
at each node, independently at random. If the inputs at the leaves of the tree
are random, {0, 1} variables, so is the resulting value at the root. What is the
distribution of the value at the root if we condition on the gates? Each of the 2™
input bits has probability 27" of influencing the output, but how sensitive is the
output to changing some of the gates? What it other gates are also included?

6 The dark waiting room

A queueing system evolves according to the following rules. Several people are
in a waiting room. Additional people arrive at some rate. At each round, each



person can request service. If a unique request is received, it is filled and the
person leaves. If more than one request is made, nothing happens.

There are many questions regarding this system. Is there a strategy such that
every person is eventually served? If person requests service with probability
1/n where n is the number of people in the room then the number of people is
recurrent as long as the rate of arrival is at most e~!. However, if the number
of people is not known, the problem is open.

A number of variations are also interesting: What if people are told how
many requests were made at each round? What is the fastest strategy if there
are n people in the room with no new arrivals?

7 Coupling TASEPs

Is there a coupling of two exclusion processes started from two different initial
conditions, so that they are at the same state for all large times? In particular,
does the so called standard coupling work? This question cames from recent
advances related to these processes [1], and a positive answer would have some
implications.

8 Allocations

The following problem has vexed researchers for a number of years. Given a
Poisson point process in R?, an allocation is a rule to associate to each point of
the process a set of area 1 in a translation invariant manner, so that the sets are
a partition of the plane. A number of allocation rules had been known [7, §],
but it was not known how to allocate bounded, connected sets. We have found
ways to construct such allocations. One of our constructions has the unusual
properties that the sets of the partition even have disjoint closures.
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