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WCLAM-2010 Workshop Information

MEALS

Coffee Breaks: As per schedule on page 2, 2nd floor lounge, Corbett Hall (included in work-
shop).
For meal options at the Banff Centre, there are buffets (breakfast: 7:00-9:30am; lunch:
11:30am-1:30pm; dinner: 5:30-7:30pm). Gooseberry’s Deli, located in the Sally Borden
Building, and The Kiln Cafe, located beside Donald Cameron Hall. There are also plenty of
restaurants and cafes in the town of Banff, a 10-15 minute walk from Corbett Hall.

MEETING ROOMS

All lectures are held in Max Bell 159. LCD projector, overhead projectors and
blackboards are available for presentations Note that the meeting space designated for
BIRS is the lower level of Max Bell, Rooms 155-159. Please respect that all other space has
been contracted to other Banff Centre guests, including any Food and Beverage in those areas.

Poster displays will be in Max Bell by the lecture room.

Friday
16:00 Check-in begins (Front Desk - Professional Development Centre - open 24 hours).

Meeting/Lecture rooms available after 16:00 in Max Bell, lower level.
19:30 Informal gathering in 2nd floor lounge, Corbett Hall.

Beverages and a small assortment of snacks are available in the lounge on a
cash honour system.

Saturday
7:00-9:00 Breakfast
9:00 Lectures

Coffee Break, 2nd floor lounge, Corbett Hall
Lectures
Lunch

13:40 Lectures
Coffee Break, 2nd floor lounge, Corbett Hall
Lectures, Posters

19:00 Dinner (Space is reserved at the “ELK and OARSMAN” upstairs
at 119 Banff Ave. Pay your own way.)

Sunday
7:00-9:00 Breakfast
9:00 Lectures

Coffee break, 2nd floor lounge, Corbett Hall
Lectures
Checkout from bedroom by 12 noon.

** 2-day workshops are welcome to use BIRS facilities (2nd Floor Lounge, Max Bell Meeting
Rooms, Reading Room) until 15:00 on Sunday, although participants are still required to
checkout of the guest rooms by 12 noon. There is no coffee break service on Sunday after-
noon, but self-serve coffee and tea are always available in the 2nd floor lounge of Corbett
Hall. **
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2 WCLAM-2010 WORKSHOP INFORMATION

Schedule

Saturday, May 8th, 2010

Date Time Speaker

May 8 8:50 – 9:00 Opening

9:00 – 9:50 Francoise Tisseur

9:50 – 10:20 Ion Zaballa

10:20 – 10:40 Coffee Break

10:40 – 11:10 Uwe Prells

11:10 – 11:40 Kevin Vander Meulen

11:40 – 12:10 Rajesh Pereira

Lunch

Date Time Speaker

May 8 13:40 – 14:30 Shmuel Friedland

14:30 – 15:00 Anne Greenbaum

15:00 – 15:20 Coffee Break

15:20 – 15:50 Michael Cavers

15:50 – 16:20 Leslie Hogben

16:20 – 16:45 Poster Session
(Garvey, Grundy,

Zinchenko)

16:45 – 17:15 Louis Deaett

17:15 – 17:45 Elizabeth Bodine

Dinner∗∗

Sunday, May 9th, 2010

Date Time Speaker

May 9 9:00 – 9:50 Ilse Ipsen

9:50 – 10:20 Chun-Hua Guo

10:20 – 10:50 Coffee Break∗

10:50 – 11:20 Judi McDonald

11:20 – 11:50 Minerva Catral

11:50 – 12:20 Shaun Fallat

12:20 Closing

∗Participants may wish to use this break to check-out from their rooms.

∗∗Space is reserved at the “Elk and Oarsman” pub, 119 Banff Ave. for 7:00pm.
(West side of Banff Ave. up a flight of stairs.)
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Title and Abstracts

Spectrally arbitrary patterns
Elizabeth J. Bodine Washington State University.

An n× n zero-nozero pattern An is spectrally arbitrary over a field F provided that for
each monic polynomial r(x) of degree n with coefficients in F, there is a matrix with entries
in F having zero-nonzero pattern An and characteristic polynomial r(x). In this talk, we will
note some of the significant results in the study of spectrally arbitrary patterns over R, C
and finite fields, particularly noting the varying techniques used depending on the specified
field. We will examine patterns that demonstrate fundamental differences in the algebraic
structure of different fields.

(with Judith J. McDonald)

Eventually nonnegative matrices and related classes
Minerva Catral Iowa State University.

A matrix A is eventually positive (respectively, nonnegative) if all sufficiently large powers
of A are positive (respectively, nonnegative). The concepts of strong eventual nonnegativ-
ity, the semi-strong Perron-Frobenius property and the subsequent classes of matrices that
possess these properties are introduced. In this poster, a Venn diagram that illustrates the
relationship among the following eight classes of matrices is presented: eventually positive
matrices (EP), strongly eventually nonnegative matrices (SEN), matrices A such that both
A and AT have the semi-strong Perron-Frobenius property (SSPF), irreducible matrices, r-
cyclic matrices, eventually nonnegative matrices (EN), nilpotent matrices and nonnegative
matrices.

(with Craig Erickson, Leslie Hogben, D. D. Olesky, P. van den Driessche)

The normalized Laplacian energy of graphs
Michael Scott Cavers University of Regina.

The concept of graph energy was defined by Ivan Gutman in 1978 and originates from
theoretical chemistry. To determine the energy of a graph, we essentially add up the eigen-
values (in absolute value) of the adjacency matrix of a graph. Recently, a few analogous
quantities of energy have been defined, including the Laplacian energy and distance energy.
In this talk, we analyze the normalized Laplacian energy of a graph. We highlight some
key results, show its connection to standard energy, and relate it to a parameter called the
general Randić index of a graph.

4



TITLE AND ABSTRACTS 5

The magical pattern L
Louis Deaett University of Victoria.

The combinatorial placement of the nonzero entries in a real matrix has an interesting
relationship with its spectral properties. This relationship is reflected, for instance, in the
refined inertia of the matrix, a quadruple specifying the inertia as well as the number of zero
eigenvalues.

We introduce a zero-nonzero pattern called L to show that it is possible for a pattern to
allow complete freedom in the refined inertia even while restricting the characteristic poly-
nomial. Moreover, the characteristic polynomials allowed by L have a surprisingly succinct
characterization.

Finally, we use the aforementioned characterization to show that the direct sum of L with
another well-studied zero-nonzero pattern yields a direct sum that is spectrally arbitrary
(that is, allows any characteristic polynomial) despite the fact that neither of its summands
is spectrally arbitrary.

(with Dale Olesky, Pauline van den Driessche)

Rank deficiency and shadows in totally nonnegative matrices
Shaun Fallat University of Regina.

An m×n matrix is called totally nonnegative (TN) if all of its minors are nonnegative. It is
a simple consequence of this definition to deduce that if A = [aij] is TN with no zero rows or
columns, and if akl = 0, then A will contain a block of zeros determined by the (k, l) position.
In this talk, I will present a generalization of this phenomenon to larger sized rank deficient
blocks and discuss some related results on row and column inclusion for TN matrices.

Tensors and matrices
Shmuel Friedland University of Illinois at Chicago.

In recent years the study of tensors, i.e. multiarrays, became a topic of an extensive research
in applied and pure mathematics. Many problems in tensors are variations of problems in
matrices, and many numerical and theoretical approaches to solve these problems using tools
and results from matrices. In this talk I will survey some results and open problems mostly
for 3-tensors. We will discuss the following topics.

(1) Rank and border of tensors.
(2) Low rank approximation of tensors.
(3) Scaling of nonnegative tensors.
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References

[1] S. Friedland. Results and problems for 3-tensors. Slides of lecture in NIU Linear Algebra Meeting, August
12-14, DeKalb, Illinois, USA, http://www.math.niu.edu/LA09/slides/friedland.pdf, 2009.

Parameterising structure preserving transformations connecting quadratic
matrix polynomials

Seamus D Garvey University of Nottingham (Poster Presentation).

The structure-preserving transformations (SPTs) of interest here are mappings which connect
strictly-isospectral quadratic matrix polynomials of the same dimension. Given any one
quadratic matrix polynomial, all other strictly-isospectral quadratic matrix polynomials can
be generated by applying SPTs to the original system [2]

If all eigenvalues are finite, SPTs can be implemented via similarity transformations
acting on the companion matrix to form a new companion matrix. Any one structure-
preserving similarity (SPS) is parameterised by two (n× n) matrices. The new mass matrix
is arbitrary (though non-singular) - giving a further (n × n) matrix in a complete SPT
parameterisation. Various symmetries in the original system can be preserved [3]

If one or more system eigenvalues are infinite, applying SPSs directly to the companion
matrix is not possible. This paper presents a parameterisation for SPTs applicable to all
regular (in the sense of [1]) quadratic matrix polynomials. Given (n × n) system matrices
{K0, D0, M0} defining a regular matrix quadratic, the structure-preserving relationships

[
WL XL

YL ZL

]" [
0 K0

K0 D0

] [
WR XR

YR ZR

]
=

[
0 K1

K1 D1

]
(1)

[
WL XL

YL ZL

]" [
K0 0
0 −M0

] [
WR XR

YR ZR

]
=

[
K1 0
0 −M1

]
(2)

[
WL XL

YL ZL

]" [
−D0 −M0

−M0 0

] [
WR XR

YR ZR

]
=

[
−D1 −M1

−M1 0

]
(3)

are satisfied if and only if the following hold for four (n×n) parameter matrices, {FL, GL, FR, GR}
[

WL XL

YL ZL

]
=

[
(FL − 1

2GLD"
0 ) (−GLM"

0 )
(GLK"

0 ) (FL + 1
2GLD"

0 )

]−1

(4)

[
WR XR

YR ZR

]
=

[
(FR − 1

2GRD0) (−GRM0)
(GRK0) (FR + 1

2GRD0)

]−1

(5)

subject to the matrix quadratic constraint

(6) FRG"
L + GRF"

L = 0.

With this, it is straightforward to preserve all possible symmetries of the original system.

(with Atanas A Popov)
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References

[1] I. Gohberg, P. Lancaster, and L. Rodman. Matrix Polynomials. Academic Press, 1982. SIAM (Philadel-
phia), 2009.

[2] P. Lancaster and U. Prells. This one incomplete.
[3] U. Prells and P. Lancaster. Isospectral vibrating systems. part 2: Structure preserving transformations.

Operator Theory: Advances and Applications, 63:275–298, 2005.

GMRES residual norm bounds using the minimal norm interpolating function
Anne Greenbaum University of Washington.

Knowing the eigenvalues λ1, . . . , λn and the field of values W (A) of an n by n matrix A,
what can be said about the quantity

‖Pk(A)‖ ≡ min
c1,...,ck

‖I +
k∑

j=1

cjA
j‖,

where ‖·‖ denotes the operator 2-norm? This quantity gives an upper bound on the residual
norm reduction after k steps of the GMRES algorithm for solving a linear system Ax = b.
Clearly ‖Pk(A)‖ ≤ 1, and if the inequality is strict, then this implies that the GMRES
algorithm restarted every k steps converges to the solution of the linear system.

It is known that ‖P1(A)‖ < 1 if and only if 0 /∈ W (A), but if 0 ∈ W (A), then little is
known about whether ‖Pk(A)‖ < 1 for some k between 2 and r− 1, where r is the degree of
the minimal polynomial of A.. We derive bounds on ‖Pk(A)‖ that hold even when 0 ∈ W (A)
by using the fact that if f is any analytic function that matches Pk (and perhaps some of its
derivatives) at the eigenvalues of A, then f(A) = Pk(A). By using bounds on ‖f(A)‖ based
on the ∞-norm of f on W (A) [2] or on a disk containing W (A) [1] or on a disk of radius
‖A‖ about the origin [3], and by choosing f to be the analytic function of smallest ∞-norm
on the appropriate set that satisfies f(A) = pk(A) for some kth degree polynomial pk with
pk(0) = 1, we thereby obtain bounds on ‖Pk(A)‖.

References

[1] M. Crouzeix. Bounds for analytical functions of matrices. Integr. Equ. Oper. Theory, 48:461–477, 2004.
[2] M. Crouzeix. Numerical range and functional calculus in hilbert space. J. of Functional Analysis, 244:668–

690, 2007.
[3] J. von Neumann. Eine spektraltheorie für allgemeine operatoren eines unitren raumes. Math. Nachr.,

4:258–281, 1951.

Potential stability of sign pattern matrices
David A. Grundy University of Victoria (Poster Presentation).

Let A = [αij] be an n×n sign pattern matrix where αij ∈ {+, 0,−} and Q(A) = {B = [bij] :
sign bij = αij for all i, j} be the set of all n × n real matrices with that sign pattern. A
sign pattern A is potentially stable if there exists a stable matrix A ∈ Q(A), i.e., a matrix
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with each of its eigenvalues having negative real part. A number of operations are identified
that can be applied to certain potentially stable sign patterns to give classes of potentially
stable sign patterns of higher order. Proof techniques include identifying a nested sequence
of principal minors of alternating sign, using a bordering technique based on similarity
transformations, and analysis of characteristic polynomials.

On a nonlinear matrix equation arising in nano research
Chun-Hua Guo University of Regina.

The matrix equation X + AT X−1A = Q arises in Green’s function calculations in nano
research, where A is a real square matrix and Q is a real symmetric matrix dependent on
a parameter and is usually indefinite. In practice one is only interested in those values of
the parameter for which the matrix equation has no stabilizing solutions. The solution of
interest in this case is a special weakly stabilizing complex symmetric solution X∗, which is
the limit of the unique stabilizing solution Xη of the perturbed equation X + AT X−1A =
Q + iηI, as η → 0+. We show that a doubling algorithm can be used to compute Xη

efficiently even for very small values of η, thus providing good approximations to X∗. It
has been observed by nano scientists that a modified fixed-point method can sometimes be
very efficient, particularly for computing Xη for many different values of the parameter. We
provide a rigorous analysis of this modified fixed-point method and its variant, and of their
generalizations.

(with Y. Kuo, W. Lin)

Sign patterns that require or allow eventual positivity, eventual nonnegativity,
or power-positivity

Leslie Hogben Iowa State University and American Institute of Mathematics.

A real square matrix A is eventually positive (respectively, eventually nonnegative) if
there exists a positive integer k0 such that for all k ≥ k0, Ak > 0 (respectively, Ak ≥ 0),
where these inequalities are entrywise. A real square matrix A is called power-positive if
there is a positive integer k such that Ak > 0. It is known that A is power positive if
and only if A or −A is eventually positive. In some applications, the data are not known
precisely but the signs of the entries are known. In such a case, the problem can be studied
through sign patterns. A sign pattern requires property P if every real matrix described by
the sign pattern has P and allows P if some real matrix described by the sign pattern has
P . This talk will summarize recent results characterizing sign patterns that require eventual
positivity, sign patterns that require eventual nonnegativity, and sign patterns that require
power-positivity, and will present several necessary or sufficient conditions for a sign pattern
to allow eventual positivity.
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(with Abraham Berman, Minerva Catral, Luz M. DeAlba, Abed Elhashash, Elisabeth El-
lison, Frank J. Hall, In-Jae Kim, D. D. Olesky, Pablo Tarazaga, Michael J. Tsatsomeros,
P. van den Driessche)

Numerical issues in randomized algorithms
Ilse C.F. Ipsen North Carolina State University.

Randomized algorithms are starting to find their way into a wide variety of applications
that give rise to enormously large matrices. Among these applications are medical imag-
ing, information retrieval (e.g. analysis of large term document matrices), genetics (e.g.
analysis of DNA micro arrays and DNA single nucleotide polymorphisms), and machine
learning. Randomized algorithms downsize the enormous matrices by picking and choosing
only particular columns or rows, thereby producing potentially huge savings in storage and
computing speed.

Although randomized algorithms can be fast and efficient, not much is known about
their numerical properties. We will discuss how accurate and reliable these randomized
algorithms are in comparison to their deterministic counterparts. Algorithms under con-
sideration include randomized versions of matrix multiplications, QR decomposition, and
subset selection.

Constructing non-negative matrices with prescribed structure
Judi McDonald Washington State University.

As part of attempting to solve the inverse eigenvalue problem for nonnegative, nonnegative
symmetric, and nonnegative normal matrices, we have developed a variety of construction
techniques with interesting properties.

Multiplier sequences, majorization and the products of normal matrices
Rajesh Pereira University of Guelph.

In 1914, Polya and Schur studied real sequences {γk}∞k=0 which have the property that
if

∑n
k=0 akxk is a polynomial all of whose roots are real so is

∑n
k=0 γkakxk; they called such

sequences multiplier sequences. We show how matrix techniques can be used to prove some
classical results on multiplier sequences as well as some new connections between multiplier
sequences and majorization. Some natural conjectures on the eigenvalues of products of
normal matrices which arise in this work are also discussed.

(with A. Church, D. Kribs)
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On the isospectral class of regular quadratic matrix polynomials
Uwe Prells University of Nottingham, United Kingdom.

Two matrix polynomials are called isospectral if they share the same Jordan matrix. For
monic matrix polynomials the associated isospectral class can be generated from a given
monic matrix polynomial by applying structure preserving similarities to the corresponding
companion polynomial. Structure preserving similarities are strict equivalence transforma-
tion of a particular linearization and correspond to a non-strict equivalence transformation
of the matrix polynomial. Those non-strict equivalence transformations are sometimes called
filters.

The problem of generating the isospectral class becomes more subtle if we allow matrix
polynomials with a singular leading coefficient because of the eigenstructure at infinity. This
presentation attempts to extent the concept of structure preserving transformations to such
regular matrix polynomials. The main result is a parameterization of the structure preserv-
ing transformations of the companion polynomial for regular quadratic matrix polynomials.
The corresponding filters are derived and several illustrative examples are given. Difficulties
that arise for matrix polynomials of higher degree are emphasized.

(with S.D. Garvey, P. Lancaster, A.A. Popov, I. Zaballa)

References

[1] S. Garvey, P. Lancaster, A.A Popov, U. Prells, and I. Zaballa. Filters connecting quadratic systems. part
2. in preparation.

[2] S.D. Garvey, U. Prells, M.I. Friswell, and C. Zheng. General isospectral flows for linear dynamic system.
LAA, 87:335–368, 2004.

[3] L. Gohberg, P. Lancaster, and L. Rodman. Matrix polynomials. SIAM Classics in Applied Mathematics,
2009.

[4] P. Lancaster and U. Prells. Isospectral families of high-order systems. ZAMM, 87:219–234, 2007.
[5] P. Lancaster, U. Prells, and L. Rodman. Canonical structures for palindromic matrix polynomials. OaM,

1(3):469–489, 2007.
[6] U. Prells and S.D. Garvey. On the class of strictly isospectral systems. MSSP, 23(6):2000–2007, 2009.

Hermitian matrix polynomials with real eigenvalues of definite type
Francoise Tisseur The University of Manchester.

Eigenvalue problems Ax = λx, with Hermitian A have many desirable properties which
lead to a variety of special algorithms. Here we consider what can be regarded as the closest
analogues of this class of problems for the generalized eigenvalue problem L(λ)x = 0, with
L(λ) = λA − B, A = A∗, B = B∗, and for the polynomial eigenvalue problem P (λ)x = 0,
with

(7) P (λ) =
m∑

j=0

λjAj, Aj = A∗
j , j = 0: m,

namely, the classes of definite, definitizable, hyperbolic, quasihyperbolic, overdamped and
gyroscopically stabilized eigenproblems [1], [2], [5], [3], [4]. A property common to all these
problems is that the eigenvalues are all real and of definite type, that is, x∗P ′(λ0)x *= 0 for
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all nonzero x ∈ ker P (λ0) and for all eigenvalues λ0. We give a unified treatment of these
classes that uses the eigenvalue type (or sign characteristic) as a common thread. Equivalent
conditions are given for each class in a consistent format. We show that these classes form a
hierarchy, all of which are contained in the new class of quasidefinite matrix polynomials. By
analyzing their effect on eigenvalue type, we show that homogeneous rotations allow results
for matrix polynomials with nonsingular or definite leading coefficient to be translated into
results with no such requirement on the leading coefficient. We also give a necessary and
sufficient condition for a quasidefinite matrix polynomial to be diagonalizable by structure
preserving congruence, and show that this condition is always satisfied in the quadratic case
and for any hyperbolic matrix polynomial, thereby identifying an important new class of
diagonalizable matrix polynomials.

(with Maha Al-Ammari)

References

[1] M. Al-Ammari and F. Tisseur. Hermitian matrix polynomials with real eigenvalues of definite type. part
i: Classification. MIMS EPrint, The University of Manchester, UK, 2010.
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[3] P. Lancaster and Q. Ye. Definitizable hermitian matrix pencils. Aequationes Mathematicae, 46:44–55,

1993.
[4] A.S. Markus. Introduction to the Spectral Theory of Polynomial Operator Pencils. American Mathemat-

ical Society, Providence, RI, USA, ISBN 0-8218-4523-3, iv+250 pp., 1988.
[5] D.S. Mackey N.J. Higham and F. Tisseur. Definite matrix polynomials and their linearization by definite

pencils. SIAM J. Matrix Anal. Appl., 31:478–502, 2009.

Structure of nilpotent patterns
Kevin N. Vander Meulen Redeemer University College.

A zero-nonzero pattern A is said to be potentially nilpotent over field F if there exists a nilpo-
tent matrix with entries in F having zero-nonzero pattern A. We explore the construction
of potentially nilpotent patterns over a field. We will describe order-four patterns which are
potentially nilpotent over various fields, highlighting those without two-cycles. We present
classes of patterns which are potentially nilpotent over a field F if and only if the field F
contains certain roots of unity.

(with Natalie Campbell, Adam van Tuyl)

On classical modal control of quadratic systems
Ion Zaballa Universidad del Páıs Vasco.

Classical modal control refers to the possibility of driving a quadratic system to quadratic
diagonal form by strict equivalence. This amounts to finding non-singular square matrices
P and Q such that PL(λ) = L̃(λ)Q where L(λ) = Mλ2 + Dλ + K is the given system and

L̃(λ) = M̃λ2 + D̃λ + K̃ is a diagonal quadratic matrix polynomial.
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The main (an by now classical) result by Caughey and O’Kelly ([1]) gives a necessary
and sufficient condition when L(λ) is symmetric and M is positive definite. Ma and Caughey
([5]) studied this problem for general systems and Lancaster and Zaballa ([4]) provided a
solution for symmetric systems when the pencil λM + K is semisimple and its eigenvalues
are of definite type, and for general systems when λM + K has simple eigenvalues. In all
these cases, the necessary and sufficient condition for reducing a given system to a diagonal
one by strict equivalence has the following commutative form: KM−1D = DM−1K.

Recently, the notion of Filters connecting two isospectral quadratic systems has been
developed ([3, 2]). Based on this concept new and more general necessary and sufficient
conditions in terms of the spectral data of the given system can be provided. The aim of
this talk is to present these new conditions.

(with S. Garvey, P. Lancaster, A. Popov, U. Prells)

References

[1] T.K. Caughey and M.B.J. O’Kelly. Classical normal modes in damped linear dynamic systems. ASME
J.of Applied Mechanics, 32:583–588, 1965.

[2] S. Garvey, P. Lancaster, A. Popov, U. Prells, and I. Zaballa. Filters connecting quadratic systems . part
2. Preprint.

[3] S. Garvey, P. Lancaster, A. Popov, U. Prells, and I. Zaballa. Filters connecting quadratic systems. part
1. Preprint.

[4] P. Lancaster and I. Zaballa. Diagonalizable quadratic bigenvalue problems. Mechanical Systems and
Signal Processing, 23:1134–1144, 2009.

[5] F. Ma and T.K. Caughey. Analysis of linear nonconservative vibrations. ASME J.of Applied Mechanics,
62:685–691, 1995.

Real proof of G̊arding’s convexity of hyperbolicity cones
Yuriy Zinchenko University of Calgary (Poster Presentation).

A homogeneous polynomial p : +n → + of degree m is hyperbolic [4] with respect to d ∈
+n, if the univariate polynomial t ,→ p(x + td) has m real roots for all x. Hyperbolic
polynomials were first carefully studied in 1950’s by G̊arding in the context of PDEs; also,
these polynomials give rise to an important class of convex optimization problems and in
many ways mimic the behavior of matrix determinants [1].

We review some elementary properties of hyperbolic polynomials, reproving G̊arding’s
key result on convexity of the so-called hyperbolicity cones using much simpler approach, and
discuss a possible relationship of these polynomials with a cone of positive definite matrices,
sometimes referred to as (generalized) Lax conjecture [2, 3].

References

[1] H. Bauschke, O. Guler, A.S. Lewis, and H.S. Sendov. Hyperbolic polynomials and convex analysis.
Canadian Journal of Mathematics, 53:470–488, 2001.

[2] J. W. Helton and V. Vinnikov. Linear matrix inequality representation of sets. Communications on Pure
and Applied Mathematics, 60:654–674, 2006.

[3] A.S. Lewis, P.A. Parrilo, and M.V. Ramana. The Lax conjecture is true. Proceedings of the American
Mathematical Society, 133:2495–2499, 2005.
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