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Operator Systems and Spaces

Definition: 1) An Operator System is subspace X ⊂ B(H), the

bounded operators on a Hilbert space, such that

1 ∈ X , X † = X .

2) A Operator Space is subspace X ⊂ B(H).

Structure: For an operator system we consider the collection

Mn(X ) ⊂ Mn(B(H)) = B(H ⊕ · · ·H)

of X valued n × n matrices entries and study the positive part

Mn(X )+ = {x = (xij) : xij ∈ X , x ≥ 0}

For an operator space we also consider Mn(X ), but now investigate

the sequence of norms ‖x‖n = ‖(xij)‖n = ‖(xij)‖Mn(B(H)).
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Connection

‖x‖ ≤ 1 iff

(
1 x

x∗ 1

)
≥ 0. A selfadjoint element is positive iff

‖x‖ ≤ 1 and ‖1− x‖ ≤ 1 .

In operator algebras one frequently uses an order morphism of the

form

Φ : B(H)→ B(H)∗ , Φ(x) = D1/2xD1/2

where D is is the density of a normal state ϕD(x) = tr(Dx). The

range of Φ(B(H)+) is given by

{ψ : B(H)→ C : ∃C>0 : 0 ≤ ψ ≤ CϕD} .

For beautiful applications see the paper of Effros/Lance on nuclear

C ∗-algebras.
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Morphism

Morphisms: A morphism between operator systems is linear unital

map u : X → Y such that

x = (xij) ≥ 0⇒ (u(xij)) ≥ 0 ,

i.e. a unital completely positive map.

A morphism between operator spaces is a linear map u : X → Y

such that ‖u‖cb = supn ‖idMn ⊗ u : Mn(X )→ Mn(Y )‖ remains

bounded.

Pro’s and Con’s:

Operator system and completely positive maps are very

well-known in operator algebras, and positivity is important.

Operator spaces are closed under taking dual spaces and can

be studied with the help of Banach space techniques.
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Features of Operator Spaces

Let X ⊂ B(H) be an operator space. Due to Ruan’s theorem there

exists en embedding ι : X ∗ → B(H) such that

Mn(X ∗) = CB(X ,Mn) isometrically.

Examples: 1) X = C = B(C, `2). Then C ∗ = R = B(`2,C).

2) (Paulsen) X = Cn = `n∞. Then

X ∗ = `n1 = span{gi : 1 ≤ i ≤ n} ⊂ C ∗(Fn), the full C ∗-algebra of

the free group.

3) (J.-Palazuelos) The dual space NSG ∗ of the space of

non-signally probabilities is a subspace of the full free product

∗mi=1`
n
∞. Here the positive elements of norm 1 in NSG are given by

probabilities {(ajk) : ajk ≥ 0 , ∀j
∑

k ajk = 1}.
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Additional features: Connection to harmonic analysis,

Grothendieck inequality/Grothendieck program is developed, many

noncommutative functions spaces, in particular vector-valued

Lp(Lq(X )) are available, the Haagerup tensor product; and

Tensor products

1) For two operator spaces ⊂ B(H) and Y ⊂ B(K ) we can define

the minimal tensor product

X ⊗min Y ⊂ B(H ⊗ K )

as the closure of finite rank tensors.

2) Note that if in addition X and Y are operator systems, then

X ⊗min Y is an operator system.

3) There is a largest projective tensor norm X ⊗̂Y such that

(X ⊗̂Y )∗ = CB(X ,Y ∗) holds completely isometrically.
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More tensor norms

In C ∗-algebra theory the maximal tensor norm on A⊗B is given by

‖
∑
k

ak ⊗ bk‖max = sup
[π(a),σ(b)]=0

‖
∑
k

π(ak)σ(bk)‖B(H)

The supremum is taken over all ∗-representation.

Problem: When does a map u : A→ B remains bounded from

u ⊗ id : A⊗min C → B ⊗max C for all C?

Variations of this norm have been studied for operator spaces

and lead to important results due to work by

Pisier/Ozawa/LeMerdy/...

Operator system analogues have recently been studied by

Paulsen-with connections to entanglement breaking channels!
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Probabilities

- In Bell’s Gedankenexperiment one considers probabilities

p(a, b|x , y) which are obtained by averaging over

independently performed experiments with input x for Alice,

and y for Bob and output a for Alice and output b for Bob:

ploc(a, b|x , y) =

∫
Ω

px
a (λ)qy

b (λ)dµ(λ)

such that
∑

a px
a (λ) = 1 =

∑
b qy

b (λ) holds for all x , y and

λ ∈ Ω.
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Alice and Bob
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Quantum version

The quantum version of this experiment replaces the commuting

variables px
a (λ) and qy

b (λ) by commuting operators

pqua(a, b|x , y) = (h|(T x
a ⊗ Sy

b )h) , h ∈ H ⊗ H

such that for all experiments x , y

T x
a ≥ 0,Sy

b ≥ 0 ,
∑

a

T x
a = 1 =

∑
b

Sy
b .

For tripartite systems one may consider (h|(T x
a ⊗ Sy

b ⊗ Rz
c )h).

Theorem: (Bell) There are quantum probabilities which are not

local.
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Linear constraints

, Following Tsirelson, we want to show that there are

significantly more quantum probabilities than classical or local

probabilities.

, We use linear testing (constraints)

‖[Mab,xy ]‖loc = sup
p local

|
∑
abxy

Mxy
ab p(a, b|xy)|

and

‖[Mab,xy ]‖qua = sup
p quantum

|
∑
abxy

Mxy
ab p(a, b|xy)| .

, The violation for a matrix M is given by the ration

viol(M) =
‖M‖qua

‖M‖loc
.
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Connection to OS

- `n1(`m∞) is an operator space.

- The unit ball of CB(`n1(`m∞),B(H)) is given by sequences

(Φi )
n
i=1 such that

Φi (eα) = a∗αbα

and
∑

α a∗αaα ≤ 1,
∑

α b∗αbα ≤ 1.

- We can also define an operator system NSG ∗(n,m) such that

CPU(NSG ∗,B(H)) is exactly given by all sequences (Φi ) such

that ∑
α

Φi (eα) = 1 for all i .

- NSG ∗ and `n1(`m∞) are closely related (see work with Carlos P.)
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min versus ε

For two Banach spaces X and Y the minimal tensor norm is given

by

‖
∑
k

xk ⊗ yk‖ε = sup
‖x∗‖≤1,‖y∗‖≤1

|
∑
k

x∗(xk)y∗(yk)| .

For a matrix Mxy
ab we see that

‖[Mab,xy ]‖loc = ‖
∑
ab,xy

Mab,xyex ,a ⊗ ey ,b‖NSG∗⊗εNSG∗)

and

‖[Mab,xy ]‖qua = ‖
∑
ab,xy

Mab,xyex ,a ⊗ ey ,b‖NSG∗⊗minNSG∗) .

Conclusion: Quantum versus local allows a one to one translation

in terms of ε versus min tensor norm.
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Comments

, Tsirelson showed that for correlations (no a’s and b’s)

Grothendieck’s inequality implies (is even equivalent to)

`1 ⊗min `1 = `1 ⊗ε `1 isomorphically. Hence the violation for

correlations is bounded.

, With Garcia-Perez, Villanueovo, Palazuelos, and Wolff, we

showed that `1 ⊗min `1 ⊗min `1 = `1 ⊗ε `1 ⊗ε `1 fails

dramatically, and hence unbounded violation can occur for

tripartite systems.

, Asymptotics for more than three parties are unknown.

, It is open whether `1 ⊗min `1(`∞) = `1 ⊗ε `1(`∞) holds.
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Classical Entropy

Definition: Let a = (aj) be a probability measure on {1, .., n}.
The entropy is given by

Ent(a) = −
n∑

k=1

ak ln(ak) .

Note: If
∑

k ak = 1, we have

Ent(a) = − d

dp
‖a‖p|p=1

where

‖a‖p =

(∑
k

ap
k

) 1
p

.
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Entropy of a channel

For a channel T : `1 → `1 the minimal entropy is given by

Ent(T ) = min
‖a‖1=1,a ≥ 0

Ent(T (a)) .

Note: For a positivity preserving, probability preserving map we

have

Ent(T ) = − d

dp
‖T : `1 → `p‖ .
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Mixed norms

For matrices (aij) we define

‖x‖`p(`q) =

∑
i

∑
j

|aij |q


p
q


1
p

.

Note: `p(`q) ⊂ `q(`p) contractively if q ≥ p.

Lemma: T and S linear maps and 1 ≤ p. Then

‖T ⊗ S : `nm
1 → `nm

p ‖ = ‖T‖‖S‖ .
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Proof

‖id ⊗ T : `m1 (`n1)→ `m1 (`np)‖ ≤ ‖T‖.

Since `m1 (`np) ⊂ `np(`m1 ) contractively, we find

‖ flip T flip : `n1(`m1 )→ `np(`m1 )‖ ≤ ‖T‖ .

We compose with

‖id ⊗ S : `np(`m1 )→ `np(`mp )‖ ≤ ‖S‖

and find

‖T ⊗ S : `nm
1 → `nm

p ‖ ≤ ‖T‖‖S‖ .
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Classical Additivity

Theorem: Ent(T ⊗ S) = Ent(T ) Ent(S)

Proof: For any channel R we define fR(p) = ‖T : `1 → `p‖. Then

fT⊗S(p) = fp(T )fp(S)

and hence

f ′T⊗S(p) = f ′p(T )fp(S) + fp(T )f ′p(S) .

For p = 1 we have f1(S) = 1 = f1(T ) and hence

−Ent(T ⊗ S) = Ent(T ) + Ent(S) .
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Noncommutative Entropy

Definition: Ent(ρ) = −tr(ρ ln(ρ)) and

Ent(Φ) = min
tr(ρ)=1

Ent(Φ(ρ)) .

Theorem: (Hastings 2009) The minimal entropy is not additive.
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Abstract Entropy

Observation: Assume that we have norms ‖ ‖p on complex n × n

matrices and mixed norms ‖ ‖p,q with corresponding spaces

Lp(Mn), Lp(Mn; Lq(Mm)) such that

Lp(Mn ⊗Mm) = Lp(Mn; Lp(Mn));

Lp(Mn; Lq(Mm)) ⊂ Lq(Mm; Lp(Mn)) contractively.

Then the expression

FΦ(p) = ‖id ⊗ Φ : L1(Mn; Lp(Mm))→ L1(Mn; Lp(Mm))

is (sub-) multiplicative and

EntF (Φ) = − d

dp
FΦ(p)|p=1

is (sub-) additive for linear maps satisfying

‖id ⊗ Φ : L1(Mnm)→ L1(Mnm)‖ = 1 .

Pisier’s definition of vector-valued Lp spaces satisfies all the above

requirements (see [DJKR](CMP)). Let p ≤ q. Then

‖x‖Lp(Mn;Lq(Mm)) = inf
x=(a⊗id)y(b⊗id)

‖a‖2s‖y‖Lq(Mnm)‖b‖2s

where 1
p = 1

q + 1
s and ‖y‖q = (tr(|y |q))

1
q .

For p ≥ q and 1
q = 1

p + 1
s we have

‖x‖Lp(Mn;Lq(Mn)) = sup
‖a‖2s‖b‖2s≤1

‖(a⊗ 1)x(b ⊗ 1)‖Lq(Mnm) .
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Comments

' Nobody explored other values than p = 1, not even for

cb-entropy from above.

' The cb-entropy should be related to the operator space

structure of the spaces considered by Szarek.

' We are working on new channels using finite dimensional

quantum groups.

' There seem to be more connections between operator space

theory and quantum capacity (with or without assisted

entanglement).
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