Quantum Error Correction	Correction of algebras	Examples	Conclusion

Quantum error correction and operator algebras

David Kribs Department of Mathematics & Statistics University of Guelph

June 28, 2010

Quantum Error Correction	Correction of algebras	Examples	Conclusion
●○		0000	○
Quantum error corre	ction		

- Traditional view of QEC is in the Schrödinger picture for quantum time evolution (evolution of states):
- A quantum channel is a completely positive trace-preserving map

$$\mathcal{E}: \mathcal{B}_t(\mathcal{H}_1) \to \mathcal{B}_t(\mathcal{H}_2),$$

with operators E_i (viewed as error operators in QEC) such that

$$\mathcal{E}(\rho) = \sum_{i} E_{i} \rho E_{i}^{*} \quad \forall \rho.$$

• Given such a channel, we look for a set **S** of states ρ (density operators) and a channel $\mathcal R$ such that

$$(\mathcal{R} \circ \mathcal{E})(\rho) = \rho \quad \forall \rho \in \mathbf{S}.$$

Quantum Error Correction ○●	Correction of algebras	Examples	Conclusion O
Quantum error corre	ction		

• On the other hand, we can consider the Heisenberg picture which describes time evolution of *observables* via completely positive unital maps (dual maps)

$$\mathcal{E}^{\dagger}:\mathcal{B}(\mathcal{H}_{2})
ightarrow\mathcal{B}(\mathcal{H}_{1}).$$

• The "sharp" observables are given by self-adjoint operators $X = \sum_k \lambda_k P_k$. The relationship between \mathcal{E} , \mathcal{E}^{\dagger} is

$$\operatorname{Tr}(\mathcal{E}(\rho)P_k) = \operatorname{Tr}(\rho \mathcal{E}^{\dagger}(P_k)),$$

which gives the probability that event k is measured after the evolution of the system with initial state ρ .

• Thus, the Schrödinger picture evolution $\mathcal{E}_2 \circ \mathcal{E}_1$ corresponds to $(\mathcal{E}_2 \circ \mathcal{E}_1)^{\dagger} = \mathcal{E}_1^{\dagger} \circ \mathcal{E}_2^{\dagger}$ in the Heisenberg picture.

Quantum Error Correction	Correction of algebras	Examples	Conclusion
	●0000	0000	O
Correction of observ	vables		

• Thus we say $X = \sum_k \lambda_k P_k$ is a correctable (sharp) observable if there is a channel \mathcal{R} such that

$$(\mathcal{R}\circ\mathcal{E})^{\dagger}(P_k)=P_k\quad\forall k.$$

• This expression means that measuring X before or after the action of $\mathcal{R} \circ \mathcal{E}$ would yield the same outcomes with the same probabilities no matter what the initial state was.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Quantum Error Correction	Correction of algebras	Examples	Conclusion O
Correction of observ	ables		

More generally, an observable is given by a *positive* operator-valued measure (POVM). In the case of a discrete measure, a POVM is specified by a family of positive operators 0 ≤ A_k ≤ I, called *effects*, such that ∑_k A_k = I. If A_k is a projection it is called a *sharp effect*.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

Thus, we say an effect A is correctable for E if there is a channel R such that (R ∘ E)[†](A) = A. And a POVM is correctable if all its effects are correctable.

Quantum Error Correction	Correction of algebras ○○●○○	Examples	Conclusion
Correction of von Ne	umann algebras		

- Question: What are correctable effects for a given channel \mathcal{E} ?
- Investigate: Suppose P is a correctable sharp effect. Then there is an effect 0 ≤ B ≤ I such that P = E[†](B) (B = R[†](P) will do). Then we have

$$P^{\perp} \mathcal{E}^{\dagger}(B) P^{\perp} = 0$$

$$\Rightarrow BE_{i} P^{\perp} = 0 \quad \forall i$$

$$\Rightarrow BE_{i} = BE_{i} P \quad \forall i$$

• Similarly (since \mathcal{E}^{\dagger} is unital) we have $E_i P = B E_i P$, and hence

$$BE_i = E_i P \quad \forall i.$$

Thus E_i^{*}E_jP = E_i^{*}BE_j = PE_i^{*}E_j, and we see that if P is correctable for E, then

$$[P, E_i^* E_j] = 0 \quad \forall i, j.$$

Quantum Error Correction	Correction of algebras	Examples	Conclusion
	○○○●○	0000	O

Correction of von Neumann algebras

Theorem

A sharp effect P is correctable for the channel $\mathcal{E}(\rho) = \sum_i E_i \rho E_i^*$ if and only if

 $[P, E_i^* E_j] = 0 \quad \text{for all } i, j.$

For sufficiency, an explicit recovery operation \mathcal{R} can be constructed and (an important point for practical purposes) the *same* recovery operation works for any channel \mathcal{E}' with operators E'_i that belong to the span of the E_i . (In many situations, the precise E_i may not be known, but often the operator system they generate is.)

Quantum Error Correction	Correction of algebras ○○○○●	Examples	Conclusion ○
Correction of von Ne	umann algebras		

The commutant of the operators $E_i^* E_j$ is a von Neumann algebra, and hence the effects it contains are the closed convex hull of its projections. Since all projections in this algebra are corrected by \mathcal{R} , so are all the effects it contains, and thus we have the following:

Corollary

The set of effects spanning the von Neumann algebra

$$\mathcal{A} = \{ A \in \mathcal{B}(\mathcal{H}_1) : [A, E_i^* E_j] = 0 \text{ for all } i, j \}$$

are all corrected by the channel \mathcal{R} constructed in the theorem above. Moreover, this algebra contains all the correctable sharp effects for \mathcal{E} .

Quantum Error Correction	Correction of algebras	Examples ●○○○	Conclusion O
Standard QEC			

• (Shor, Steane, Knill-Laflamme, Bennett-DiVincenzo-Smolin -Wootters, Gottesman, etc) A *code* is given by a subspace $\mathcal{H}_0 \subseteq \mathcal{H}_1$, dim $\mathcal{H}_0 < \infty$. Then \mathcal{H}_0 is *correctable* for \mathcal{E} if $\exists \mathcal{R}$ such that $\mathcal{R}(\mathcal{E}(\rho)) = \rho \ \forall \rho$ supported on \mathcal{H}_0 .

Quantum Error Correction	Correction of algebras	Examples ●○○○	Conclusion ○
Standard QEC			

• (Shor, Steane, Knill-Laflamme, Bennett-DiVincenzo-Smolin -Wootters, Gottesman, etc) A *code* is given by a subspace $\mathcal{H}_0 \subseteq \mathcal{H}_1$, dim $\mathcal{H}_0 < \infty$. Then \mathcal{H}_0 is *correctable* for \mathcal{E} if $\exists \mathcal{R}$ such that $\mathcal{R}(\mathcal{E}(\rho)) = \rho \ \forall \rho$ supported on \mathcal{H}_0 .

• In other words, $\mathcal{R}'(\mathcal{E}(V\rho V^*)) = \rho$, $\forall \rho \in \mathcal{B}_t(\mathcal{H}_0)$, where $\mathcal{R}'(\rho) = V^*\mathcal{R}(\rho)V$ and $V : \mathcal{H}_0 \hookrightarrow \mathcal{H}_1$.

Quantum Error Correction	Correction of algebras	Examples ●000	Conclusion ○
Standard QEC			

- (Shor, Steane, Knill-Laflamme, Bennett-DiVincenzo-Smolin -Wootters, Gottesman, etc) A *code* is given by a subspace $\mathcal{H}_0 \subseteq \mathcal{H}_1$, dim $\mathcal{H}_0 < \infty$. Then \mathcal{H}_0 is *correctable* for \mathcal{E} if $\exists \mathcal{R}$ such that $\mathcal{R}(\mathcal{E}(\rho)) = \rho \ \forall \rho$ supported on \mathcal{H}_0 .
- In other words, $\mathcal{R}'(\mathcal{E}(V\rho V^*)) = \rho$, $\forall \rho \in \mathcal{B}_t(\mathcal{H}_0)$, where $\mathcal{R}'(\rho) = V^*\mathcal{R}(\rho)V$ and $V : \mathcal{H}_0 \hookrightarrow \mathcal{H}_1$.
- Thus H₀ is correctable for E iff B(H₀) is correctable for E (in our algebraic sense) iff {V*E_i*E_jV}' = B(H₀)' = CI; i.e., ∃λ_{ij} such that

$$V^*E_i^*E_jV=\lambda_{ij}I,$$

which is exactly the Knill-Laflamme condition for QEC.

Quantum Error Correction	Correction of algebras	Examples ⊙●○○	Conclusion
Subsystem codes			

(K.-Laflamme-Poulin, Klappenecker, Sarvepalli, Aly, Nielsen, etc) A subsystem code is defined through a subspace H₀ ⊆ H₁ with a particular subsystem decomposition H₀ = H_A ⊗ H_B. Let V : H₀ → H₁. Then H_A is correctable for E if ∃ R such that ∀ρ ∈ B_t(H_A), ∀τ ∈ B_t(H_B), ∃τ' ∈ B_t(H_B) for which

$$\mathcal{R}(\mathcal{E}(V(\rho \otimes \tau)V^*)) = \rho \otimes \tau'.$$

Quantum Error Correction	Correction of algebras	Examples ⊙●⊙⊙	Conclusion ○
Subsystem codes			

(K.-Laflamme-Poulin, Klappenecker, Sarvepalli, Aly, Nielsen, etc) A subsystem code is defined through a subspace H₀ ⊆ H₁ with a particular subsystem decomposition H₀ = H_A ⊗ H_B. Let V : H₀ → H₁. Then H_A is correctable for E if ∃ R such that ∀ρ ∈ B_t(H_A), ∀τ ∈ B_t(H_B), ∃τ' ∈ B_t(H_B) for which

$$\mathcal{R}(\mathcal{E}(V(\rho\otimes\tau)V^*))=\rho\otimes\tau'.$$

• One can show that this is equivalent, in our framework, to the case where the correctable algebra \mathcal{A} is any type I finite-dimensional factor

$$\mathcal{A} = \mathcal{B}(\mathcal{H}_A) \otimes I_B.$$

Quantum Error Correction	Correction of algebras	Examples ○○●○	Conclusion O
Type I infinite dimensional example			

Let H₀ ⊆ H₁ with dim H₀ = ∞ = dim H[⊥]₀. Let {P_i}[∞]_{i=0} be projections onto mutually orthogonal subspaces {H_i}[∞]_{i=0} and partial isometries V_i such that V^{*}_i V_i = P₀ and V_iV^{*}_i = P_i.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Quantum Erro	or Correction	Correction of algebras	Examples ○○●○	Conclusion O
Type I	infinite dimen	sional example		

- Let H₀ ⊆ H₁ with dim H₀ = ∞ = dim H₀[⊥]. Let {P_i}_{i=0}[∞] be projections onto mutually orthogonal subspaces {H_i}_{i=0}[∞] and partial isometries V_i such that V_i^{*} V_i = P₀ and V_iV_i^{*} = P_i.
- Suppose we have probabilities p_i ≥ 0; ∑_i p_i = 1. Then we have a channel,

$$\mathcal{E}(\rho) = \sum_{i} p_i V_i \rho V_i^* : \mathcal{B}_t(\mathcal{H}_0) \to \mathcal{B}_t(\mathcal{H}_1).$$

Quantum Error Corr	rection	Correction of algebras	Examples ○○●○	Conclusion o
Type I int	finite dimen	sional exampl	e	

- Let H₀ ⊆ H₁ with dim H₀ = ∞ = dim H[⊥]₀. Let {P_i}[∞]_{i=0} be projections onto mutually orthogonal subspaces {H_i}[∞]_{i=0} and partial isometries V_i such that V^{*}_i V_i = P₀ and V_iV^{*}_i = P_i.
- Suppose we have probabilities p_i ≥ 0; ∑_i p_i = 1. Then we have a channel,

$$\mathcal{E}(\rho) = \sum_{i} p_i V_i \rho V_i^* : \mathcal{B}_t(\mathcal{H}_0) \to \mathcal{B}_t(\mathcal{H}_1).$$

• Then $V_i^* V_j = \delta_{ij} I_{\mathcal{H}_0}$, and so $\{V_i^* V_j\}' = \mathcal{B}(\mathcal{H}_0)$. Thus, $\mathcal{B}(\mathcal{H}_0)$ is a type I infinite dimensional code, the natural generalization of finite-dimensional codes. In fact this is the prototypical example in *continuous variable* QEC (Braunstein, Lloyd -Slotine).

Quantum Error Correction	Correction of algebras	Examples 000●	Conclusion ○
Type II example: irra	ational rotation alge	bra	

Consider two unitaries U, V on infinite dimensional space such that UV = e^{2πiθ}VU with θ irrational. We can take U = e^{iaλ̂}, V = e^{ibρ̂}, where λ̂, ρ̂ are position and momentum operators on L²(ℝ) satisfying the canonical commutation relations [λ̂, ρ̂] = i1.

Quantum Error Correction	Correction of algebras	Examples ○○○●	Conclusion O
Type II example: i	rrational rotation	algebra	

Consider two unitaries U, V on infinite dimensional space such that UV = e^{2πiθ}VU with θ irrational. We can take U = e^{iax̂}, V = e^{ibp̂}, where x̂, p̂ are position and momentum operators on L²(ℝ) satisfying the canonical commutation relations [x̂, p̂] = i1.

• We can consider a noise model with errors *I*, *U*, *V* as the possible errors. Thus, to find the correctable algebra we compute the commutant of {*U*, *V*}.

Quantum Error Correction	Correction of algebras	Examples ○○○●	Conclusion O
Type II example: i	rrational rotation	algebra	

- Consider two unitaries U, V on infinite dimensional space such that UV = e^{2πiθ}VU with θ irrational. We can take U = e^{iax̂}, V = e^{ibp̂}, where x̂, p̂ are position and momentum operators on L²(ℝ) satisfying the canonical commutation relations [x̂, p̂] = i1.
- We can consider a noise model with errors *I*, *U*, *V* as the possible errors. Thus, to find the correctable algebra we compute the commutant of {*U*, *V*}.
- But, in the concrete case above, this commutant is generated by unitaries $U' = e^{i(a/\theta)\hat{x}}$ and $V' = e^{i(b/\theta)\hat{p}}$, and is a factor of type II (Faddeev), and hence we find a naturally arising type II correctable algebra.

Quantum Error Correction	Correction of algebras	Examples	Conclusion •
References			

- D. W. Kribs, R. Laflamme, D. Poulin, Unified and generalized approach to quantum error correction, Phys. Rev. Lett. 94, 180501 (2005) [arXiv:quant-ph/0412076].
- C. Bény, A. Kempf, D. W. Kribs, *Quantum error correction on infinite dimensional Hilbert space*, J. Math. Phys. **50**, 062108 (2009) [arXiv:0811.0421]

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○