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Quantum error correction

Traditional view of QEC is in the Schrödinger picture for
quantum time evolution (evolution of states):

A quantum channel is a completely positive trace-preserving
map

E : Bt(H1)→ Bt(H2),

with operators Ei (viewed as error operators in QEC) such that

E(ρ) =
∑

i

EiρE ∗i ∀ρ.

Given such a channel, we look for a set S of states ρ (density
operators) and a channel R such that

(R ◦ E)(ρ) = ρ ∀ρ ∈ S.
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Quantum error correction

On the other hand, we can consider the Heisenberg picture
which describes time evolution of observables via completely
positive unital maps (dual maps)

E† : B(H2)→ B(H1).

The “sharp” observables are given by self-adjoint operators
X =

∑
k λkPk . The relationship between E , E† is

Tr(E(ρ)Pk) = Tr(ρ E†(Pk)),

which gives the probability that event k is measured after the
evolution of the system with initial state ρ.

Thus, the Schrödinger picture evolution E2 ◦ E1 corresponds to
(E2 ◦ E1)† = E†1 ◦ E

†
2 in the Heisenberg picture.



Quantum Error Correction Correction of algebras Examples Conclusion

Correction of observables

Thus we say X =
∑

k λkPk is a correctable (sharp) observable
if there is a channel R such that

(R ◦ E)†(Pk) = Pk ∀k .

This expression means that measuring X before or after the
action of R ◦ E would yield the same outcomes with the same
probabilities no matter what the initial state was.
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Correction of observables

More generally, an observable is given by a positive
operator-valued measure (POVM). In the case of a discrete
measure, a POVM is specified by a family of positive
operators 0 ≤ Ak ≤ I , called effects, such that

∑
k Ak = I . If

Ak is a projection it is called a sharp effect.

Thus, we say an effect A is correctable for E if there is a
channel R such that (R ◦ E)†(A) = A. And a POVM is
correctable if all its effects are correctable.
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Correction of von Neumann algebras

Question: What are correctable effects for a given channel E?

Investigate: Suppose P is a correctable sharp effect. Then
there is an effect 0 ≤ B ≤ I such that P = E†(B)
(B = R†(P) will do). Then we have

P⊥E†(B)P⊥ = 0

⇒ BEiP
⊥ = 0 ∀i

⇒ BEi = BEiP ∀i

Similarly (since E† is unital) we have EiP = BEiP, and hence

BEi = EiP ∀i .

Thus E ∗i EjP = E ∗i BEj = PE ∗i Ej , and we see that if P is
correctable for E , then

[P,E ∗i Ej ] = 0 ∀i , j .
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Correction of von Neumann algebras

Theorem

A sharp effect P is correctable for the channel E(ρ) =
∑

i EiρE ∗i if
and only if

[P,E ∗i Ej ] = 0 for all i , j .

For sufficiency, an explicit recovery operation R can be constructed
and (an important point for practical purposes) the same recovery
operation works for any channel E ′ with operators E ′i that belong
to the span of the Ei . (In many situations, the precise Ei may not
be known, but often the operator system they generate is.)
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Correction of von Neumann algebras

The commutant of the operators E ∗i Ej is a von Neumann algebra,
and hence the effects it contains are the closed convex hull of its
projections. Since all projections in this algebra are corrected by R,
so are all the effects it contains, and thus we have the following:

Corollary

The set of effects spanning the von Neumann algebra

A = {A ∈ B(H1) : [A,E ∗i Ej ] = 0 for all i , j}

are all corrected by the channel R constructed in the theorem
above. Moreover, this algebra contains all the correctable sharp
effects for E .
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Standard QEC

(Shor, Steane, Knill-Laflamme, Bennett-DiVincenzo-Smolin
-Wootters, Gottesman, etc) A code is given by a subspace
H0 ⊆ H1, dimH0 <∞. Then H0 is correctable for E if ∃R
such that R(E(ρ)) = ρ ∀ρ supported on H0.

In other words, R′(E(V ρV ∗)) = ρ, ∀ρ ∈ Bt(H0), where
R′(ρ) = V ∗R(ρ)V and V : H0 ↪→ H1.

Thus H0 is correctable for E iff B(H0) is correctable for E (in
our algebraic sense) iff {V ∗E ∗i EjV }′ = B(H0)′ = CI ; i.e., ∃λij

such that
V ∗E ∗i EjV = λij I ,

which is exactly the Knill-Laflamme condition for QEC.
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Subsystem codes

(K.-Laflamme-Poulin, Klappenecker, Sarvepalli, Aly, Nielsen,
etc) A subsystem code is defined through a subspace H0 ⊆ H1

with a particular subsystem decomposition H0 = HA ⊗HB .
Let V : H0 ↪→ H1. Then HA is correctable for E if ∃ R such
that ∀ρ ∈ Bt(HA), ∀τ ∈ Bt(HB), ∃τ ′ ∈ Bt(HB) for which

R(E(V (ρ⊗ τ)V ∗)) = ρ⊗ τ ′.

One can show that this is equivalent, in our framework, to the
case where the correctable algebra A is any type I
finite-dimensional factor

A = B(HA)⊗ IB .
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Type I infinite dimensional example

Let H0 ⊆ H1 with dimH0 =∞ = dimH⊥0 . Let {Pi}∞i=0 be
projections onto mutually orthogonal subspaces {Hi}∞i=0 and
partial isometries Vi such that V ∗i Vi = P0 and ViV

∗
i = Pi .

Suppose we have probabilities pi ≥ 0;
∑

i pi = 1. Then we
have a channel,

E(ρ) =
∑

i

piViρV ∗i : Bt(H0)→ Bt(H1).

Then V ∗i Vj = δij IH0 , and so {V ∗i Vj}′ = B(H0). Thus, B(H0)
is a type I infinite dimensional code, the natural generalization
of finite-dimensional codes. In fact this is the prototypical
example in continuous variable QEC (Braunstein, Lloyd
-Slotine).
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Type II example: irrational rotation algebra

Consider two unitaries U,V on infinite dimensional space such
that UV = e2πiθVU with θ irrational. We can take U = e iax̂ ,
V = e ibp̂, where x̂ , p̂ are position and momentum operators
on L2(R) satisfying the canonical commutation relations
[x̂ , p̂] = i1.

We can consider a noise model with errors I ,U,V as the
possible errors. Thus, to find the correctable algebra we
compute the commutant of {U,V }.
But, in the concrete case above, this commutant is generated
by unitaries U ′ = e i(a/θ)x̂ and V ′ = e i(b/θ)p̂, and is a factor of
type II (Faddeev), and hence we find a naturally arising type II
correctable algebra.
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