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Let (X,Σ, µ) be a probability space. An operator T on L∞(X,Σ, µ)

is called Markov if T is a positive contraction, T (1) = 1 (T ∗(1) = 1)

and
∫
Tfdµ =

∫
fdµ , for all f ∈ L∞(X,Σ, µ) . Then T extends to a

positive contraction on Lp(X,Σ, µ) , for all p ≥ 1 .

Theorem (Rota, 1961):

(a) (T n(T ∗)n)n≥1 admits a dilation in terms of a martingale.

(b) (T n(T ∗)n)(f ) converges a.s., for all f ∈ Lp(X,Σ, µ) , p ≥ 1.

Idea of proof: On some probability space (Ω,F , ν), construct a

Markov process associated with T . Imagine a particle located at x0 ∈
X at time t = 0, where Prob(x0 ∈ A0) = µ(A0). At t = 1 the particle

jumps to a new location x1 ∈ X , with Prob(x1 ∈ A1) = T (χA1)(x0) .

From x1, the particle jumps at t = 2 to x2 ∈ X , with probability that

only depends on x1, not on x0. And so on.

Model: Ω := XN path (trajectory) space, F = product σ-algebra on

Ω , ν = Markov measure on F . For n ≥ 0 , Xn is a random variable

given by (xn)n≥0 ∈ Ω 7→ xn ∈ X . Time evolution β is the shift

operator on Ω. Define F̂0 := {A0 ×X ×X × . . . : A0 ∈ Σ} and for

n ≥ 1 , Fn := {X × . . .×X × S : S ∈ F} . Clearly
. . . ⊆ Fn+1 ⊆ Fn ⊆ . . . ⊆ F1 ⊆ F0 := F .

Let ι : Ω → X be defined by ι(x0, x1, . . .) := x0 . Then ι extends to

an isomorphism ι : Lp(Ω, F̂0, ν) → Lp(X,Σ, µ), and we get

(ι∗ ◦ (T n(T ∗)n) ◦ ι)(f ) = Ê(En(f)) , n ≥ 1

for all f ∈ Lp(Ω, F̂0, ν) , where En := E( · |Fn) , Ê := E( · |F̂0) .
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Definition (Anantharaman-Delaroche, 2004):

Let (M,ϕ) and (N,ψ) be von Neumann algebras with normal, faithful

states ϕ, ψ. A linear map T : M → N is called (ϕ, ψ)-Markov map if

• T is completely positive

• T (1M) = 1N

• ψ ◦ T = ϕ

• T ◦ σϕt = σψt ◦ T , t ∈ R .

If (M,ϕ) = (N,ψ) , then T is called a ϕ-Markov map on M .

Remark: A (ϕ, ψ)-Markov map T : M → N has an adjoint (ψ, ϕ)-

Markov map T ∗ : N →M , uniquely determined by

ψ(yT (x)) = ϕ(T ∗(y)x) , x ∈M , y ∈ N .

A noncommutative Kolmogorov-Daniell construction

Given a ϕ-Markov map T on (M,ϕ) , find a von Neumann algebra P

with a n. f. state χ , a time evolution endomorphism β : P → P and

a normal, injective ∗-homomorphism J0 :M ↪→ P such that

β is χ−Markov , J0 is (ϕ, χ)−Markov (1)

and, if En] and E[n are the conditional expectations on Pn] and P[n ,

respectively, where Pn] :=
∨
k≤n Jk(M) , P[n :=

∨
k≥n Jk(M) and

Jk := βk ◦ J0 , then (P, β, J0, (En])n≥0) is a quantum Markov process

satisfying for all n ≥ 0

En] ◦ Jq = Jn ◦ T q−n , q ≥ n (2)

E[n ◦ J0 = Jn ◦ (T ∗)n . (3)
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Note: Such a construction for a unital completely positive map on a

unital C∗-algebra M satisfying (2) has been carried out by Sauvageot

(1986). However, condition (1) does not appear to be satisfied. Also,

here we insist on (3) being satisfied, as well, since then we obtain

J0 ◦ T n ◦ (T ∗)n = E0] ◦ E[n ◦ J0 .
Further, since J∗

0 = J−1
0 ◦ E0] , this implies that

T n ◦ (T ∗)n = J∗
0 ◦ E[n ◦ J0 , n ≥ 1 .

A similar reasoning as in the proof of the classical theorem of Rota (us-

ing noncommmutative versions of martingale inequalities) yields con-

vergence of (T n ◦ (T ∗)n)(x) ”a.s.” x ∈ Lp(M ,ϕ) .

C. Anantharaman-Delaroche (2004) proved that a noncommutative

Kolmogorov-Daniell construction satisfying all conditions (1) − (3) is

possible if and only if the ϕ-Markov map T :M →M is factorizable.

Definition (Anantharaman-Delaroche, 2004):

A (ϕ, ψ)-Markov map T : M → N is called factorizable if there exists

a von Neumann algebra P with a normal, faithful state χ and injective

∗-homomorphisms α : M → P and β : N → P such that

α is (ϕ, χ)−Markov, β is (ψ, χ)− Markov and T = β∗ ◦ α.

M
T //

α
��?

??
??

??
? N

P
β∗

@@��������
Note that β∗ = β−1 ◦ Eβ(N) .

Remark: By (2), E0] ◦ J1 = J0 ◦ T , which implies that T = J∗
0 ◦ J1 .
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Remark: The set of factorizable ϕ-Markov maps onM is convex, and

it is closed under composition and taking adjoints.

It can be shown that every Markov map between abelian von Neumann

algebras is factorizable.

Problem (Anantharaman-Delaroche, 2004):

Is every Markov map factorizable?

Markov maps on (Mn(C) , τn))

Here τn is the normalized trace on Mn(C) .

Let T : Mn(C) → Mn(C) be a (Mn(C) , τn)-Markov map, i.e., T is

completely positive, T (1) = 1 and τn ◦ T = τn . By a result of Choi

(1973), T is completely positive if and only if

Tx =

d∑
i=1

a∗ixai , x ∈Mn(C)

where a1 , . . . , ad ∈Mn(C) can be chosen to be linearly independent.

Then, the condition T (1) = 1 is equivalent to
∑d

i=1 a
∗
iai = 1 , while

the condition τn ◦ T = τn is equivalent to
∑d

i=1 aia
∗
i = 1 .

Result (Kümmerer, 1983): Every (M2(C) , τ2)-Markov map lies in

conv(Aut(M2(C))), hence it is factorizable.
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Theorem 1 (Haagerup-M.):

Let T : Mn(C) → Mn(C) be a (Mn(C) , τn)-Markov map, written in

the form

Tx =

d∑
i=1

a∗ixai , x ∈Mn(C) , (4)

where a1 , . . . , ad ∈Mn(C) are linearly independent.

The following are equivalent:

1) T is factorizable

2) There exists a finite von Neumann algebraN with a normal faithful

tracial state τN and a unitary u ∈Mn(N) such that

Tx = (idMn(C) ⊗ τN)(u
∗(x⊗ 1)u) , x ∈Mn(C) .

3) There exists a finite von Neumann algebraN with a normal faithful

tracial state τN and v1 , . . . , vd ∈ N such that u : =
∑d

i=1 ai⊗ vi
is a unitary operator in Mn(C)⊗N and

τN(v
∗
i vj) = δij , 1 ≤ i, j ≤ d .

Corollary 1:

Let T : Mn(C) → Mn(C) be a (Mn(C) , τn)-Markov map of the form

(4), where a1 , . . . , ad ∈Mn(C) . If d ≥ 2 and the set

{a∗iaj : 1 ≤ i, j ≤ d}

is linearly independent, then T is not factorizable.

6



Proof of Corollary 1:

Assume that T is factorizable. By Theorem 1, there exists a finite

von Neumann algebra N with a normal faithful tracial state τN and

v1 , . . . , vd ∈ N such that u : =
∑d

i=1 ai ⊗ vi is unitary. Since∑d
i=1 a

∗
iai = 1 , it follows that

d∑
i,j=1

a∗iaj ⊗ (v∗i vj − δij1N) = u∗u−

(
d∑
i=1

a∗iai

)
⊗ 1N = 0 .

By the linear independence of the set {a∗iaj : 1 ≤ i, j ≤ d} ,

v∗i vj − δij1N = 0 , 1 ≤ i, j ≤ d .

Since d ≥ 2 , it follows in particular that

v∗1v1 = v∗2v2 = 1 , v∗1v2 = 0 .

Since N is finite, v1 and v2 are unitary operators, which gives rise to a

contradiction. This proves that T is not factorizable.
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Example 1 (Haagerup-M.): Set

a1 =
1√
2

 0 0 0

0 0 −1

0 1 0

 , a2 =
1√
2

 0 0 1

0 0 0

−1 0 0


a3 =

1√
2

 0 −1 0

1 0 0

0 0 0


Then

∑3
i=1 a

∗
iai =

∑3
i=1 aia

∗
i = 1 . Hence the operator T defined by

Tx : =

3∑
i=1

a∗ixai , x ∈M3(C)

is a (M3(C) , τ3)-Markov map. The set

{a∗iaj : 1 ≤ i, j ≤ 3}

is linearly independent. Hence, by Corollary 1, T is not factorizable.

Remark: Let FM(Mn(C)) be the set of factorizable (Mn(C) , τn)-
Markov maps. Since all automorphisms of Mn(C) are inner,

conv(Aut(Mn(C))) ⊆ FM(Mn(C) , τn) . (5)

Question: Is the inclusion (5) strict?
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Proposition 1 (Haagerup-M.):

Let T : Mn(C) → Mn(C) be a (Mn(C) , τn)-Markov map written in

the form

Tx =

d∑
i=1

a∗ixai , x ∈Mn(C) ,

where a1 , . . . , ad ∈Mn(C) are linearly independent. Then the follow-

ing conditions are equivalent:

(a) T ∈ conv(Aut(Mn(C)) .

(b) T satisfies condition 2) of Theorem 1 with N abelian.

(c) T satisfies condition 3) of Theorem 1 with N abelian.

Corollary 2:

Let T : Mn(C) →Mn(C) be a (Mn(C) , τn)-Markov map of the form

Tx =

d∑
i=1

a∗ixai , x ∈Mn(C) ,

where a1 , . . . , ad ∈ Mn(C) are self-adjoint,
∑d

i=1 a
2
i = 1 and satisfy

aiaj = ajai , 1 ≤ i, j ≤ d . Then the following hold:

(a) T is factorizable.

(b) If d ≥ 3 and the set {aiaj : 1 ≤ i ≤ j ≤ d} is linearly independent,
then T /∈ conv(Aut(Mn(C))) .
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Schur multipliers

If B = (bij)
n
i,j=1 is a positive semi-definite matrix, then the map

TB :Mn(C) →Mn(C)
TB(x) : = (bijxij)1≤i,j≤n , x = (xij)

n
i,j=1 ∈Mn(C)

is called the Schur multiplier associated to the matrix B . Note that

TB is completely positive. If, moreover,

b11 = b22 = . . . = bnn = 1 ,

then TB(1) = 1 and τn ◦ TB = τn . Hence TB is (Mn(C) , τn)-Markov.

There exist lin. independent n×n diagonal matrices a1 , . . . ad so that

TB(x) =

d∑
i=1

a∗ixai , x ∈Mn(C).

If the entries of B are real, then a∗i = ai and
∑d

i=1 a
2
i = 1. By Corol-

lary 2, TB is factorizable. (This is a result of Ricard, 2007.)

Example 2 (Haagerup-M.): Let β = 1/
√
5 and set

B : =



1 β β β β β

β 1 β −β −β β

β β 1 β −β −β
β −β β 1 β −β
β −β −β β 1 β

β β −β −β β 1


.

Then TB satisfies the hypotheses of Corollary 2, hence TB is a factor-

izable Markov map on M6(C) , but TB /∈ conv(Aut(M6(C))) .
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Example 3 (Haagerup-M.): Let 0 < s < 1 and set

B(s) : =


1

√
s

√
s

√
s√

s s s s√
s s s s√
s s s s

 + (1− s)


0 0 0 0

0 1 ω ω

0 ω 1 ω

0 ω ω 1

 ,

where ω = ei2π/3 = −1/2 + i
√
3/2 and ω is its complex conjugate.

Then B(s) is positive semi-definite matrix of rank 2 (cf. Christensen

and Vesterstrøm). Moreover,

TB(s)(x) =

2∑
i=1

ai(s)
∗xai(s) , x ∈M4(C) ,

where a1(s) = diag(1 ,
√
s ,

√
s ,

√
s) , a2(s) =

√
1− s diag(0 , 1 , ω , ω) .

The set {a∗iaj : i, j = 1, 2} is linearly independent, hence TB(s) is not

factorizable, by Corollary 1.

Furthermore, set

L =
dB(s)

ds |s=1

=
1

2


0 1 1 1

1 0 3− i
√
3 3 + i

√
3

1 3 + i
√
3 0 3− i

√
3

1 3− i
√
3 3 + i

√
3 0

 .

Then

N(t) :=
(
e−Lijt

)
1≤i,j≤4

, t ≥ 0

is a semigroup of positive definite matrices having 1 on the diagonal.

Hence

T (t) : = TN(t) , t ≥ 0
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is a semigroup of Schur multipliers which are (M4(C), τ4)-Markov maps.

For t > 0 , N(t) has rank 4, and therefore Corollary 1 cannot be

applied. Using a different method we can obtain from Theorem 1

that there exists t0 > 0 such that T (t) is not factorizable, for any

0 < t < t0 .

Remarks:

By a result of Kümmerer and Maassen (1987), it follows that if

T (t) : = e−Lt , t ≥ 0

is a one-parameter semigroup of (Mn(C) , τn)-Markov maps satisfying

T (t)∗ = T (t) , t ≥ 0 ,

then T (t) ∈ conv(Aut(Mn(C))) , for all t ≥ 0 . In particular,

T (t) is factorizable, t ≥ 0 .

In very recent work, Junge, Ricard and Shlyakhtenko have general-

ized the result of Kümmerer and Maassen, by showing that if (Tt)t≥0

is a strongly continuous one-parameter semigroup of (M, τM)-Markov

maps (with T0 = idM) on an arbitrary finite von Neumann algebra M

with a faithful, normal tracial state τM , satisfying

T (t)∗ = T (t) , t ≥ 0 ,

then T (t) is factorizable, for all t ≥ 0. This result has been obtained

independently (by different methods) by Yoann Dabrowski.
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Further related results

Dykema and Jushenko (2009) considered the following sets for n ≥ 1:

Fn : =
∪
k≥1

{
B = (bij) ∈Mn(C) : bij = τk(uiu∗j) , u1, . . . , un ∈ U(Mk(C))

}
Gn : =

{
B = (bij) ∈Mn(C) : bij = τM(uiu

∗
j) , u1, . . . , un ∈ U(M) , for

some (M , τM) von Neumann algebra with n.f. tracial state τM

}
By results of Kirchberg (1993), Connes’ embedding conjecture holds if

and only if

Fn = Gn , for all n ≥ 1 .

Consider further the set

Θ := {B = (bij) ∈Mn(C) : B positive semidefinite , bii = 1 , 1 ≤ i ≤ n} .

It is clear that

Fn ⊆ Gn ⊆ Θn , n ≥ 1 .

Question: Is it true that Fn = Θn , for all n ≥ 1?

Dykema and Jushenko proved that the answer is NO if n ≥ 4 . More

precisely, in the case n = 4 , they proved that G4 has no extreme

points of rank 2, while there are extreme points of rank 2 in Θ4 . Hence

G4 ̸= Θ4 .

Connection with factorizability

As a consequence of Theorem 1,

Gn = {B ∈ Θn : TB is factorizable } , n ≥ 1 .

13



On the connection between Anantharaman-Delaroche’s

work and Kümmerer’s work (Communicated by Claus Koestler,

May 2008)

Definition (Kümmerer, JFA 1985):

Let (M,ϕ) be a von Neumann algebra with a normal, faithful state ϕ .

A ϕ-Markov map T : M →M has a dilation if there exists

• (N,ψ) von Neumann algebra with a normal faithful state ψ

• i : M → N (ϕ, ψ)-Markov injective ∗-homomorphism

• α ∈ Aut(N,ψ)

such that T n = i∗ ◦ αn ◦ i , for all n ≥ 1 .

N
αn //N

ι∗
��

M
Tn

//

ι

OO

M

Combining results from Anantharaman-Delaroche (2004) with results

from Kümmerer’s unpublished Habilitationsschrift (1986), one gets the

following

Theorem (Anantharaman-Delaroche, 2004 + Kümmerer, 1986):

Let T : M →M be a ϕ-Markov map. The following are equivalent:

(1) T is factorizable.

(2) T has a dilation.
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Proof:

The implication (2) ⇒ (1) is elementary, because if (2) holds, then

T = i∗ ◦ (α ◦ i) ,

where both α ◦ i and i are (ϕ, ψ)-Markov injective ∗-homomorphisms

of M into N .

We now show that (1) ⇒ (2).

Anantharaman-Delaroche (2004) proved that if T is factorizable, then

there exists (N,ψ) a von Neumann algebra N with a normal, faithful

state ψ , an injective ∗-homomorphism i : M → N which is (ϕ, ψ)-

Markov, and a (ψ, ψ)-Markov injective ∗-homomorphism β : N → N

such that

T n = i∗ ◦ βn ◦ i , n ≥ 1 .

However, using a result of Kümmerer from his Habilitationsschrift

(1986), one can extend β to a ψ̃-preserving automorphism α on a

larger von Neumann algebra Ñ , namely

(Ñ , ψ̃) = inductive limit of (N ,ψ)
β−→ (N ,ψ)

β−→ . . .

such that ĩ : M → N ⊆ Ñ becomes a (ϕ, ψ̃)-Markov injective ∗-
homomorphism and

T n = (̃i)∗ ◦ αn ◦ ĩ , n ≥ 1.

Hence T has a dilation.
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In his Habilitationsschrift (1986), Kümmerer constructs examples of

τn-Markov maps onMn(C) having no dilation. His examples are simi-

lar to our examples 1 and 3, but he does not consider the one-parameter

semigroup case.

Proposition (Kümmerer, 1986):

(1) Let T : M3(C) →M3(C) be the τ3-Markov map

Tx : =

3∑
i=1

a∗ixai , x ∈M3(C)

where

a1 =
1√
2

 0 0 0

1 0 0

0 1 0

 , a2 =
1√
2

 0 1 0

0 0 1

0 0 0


a3 =

1√
2

 0 0 1

0 0 0

1 0 0


Then T has no dilation.

(2) Let n ≥ 4 and T : Mn(C) →Mn(C) be the τn-Markov map

Tx : =

2∑
i=1

a∗ixai , x ∈Mn(C)

where

a1 = diag

(
1 ,

1√
2
,
1√
2
, 0 , . . . , 0

)
, a2 = diag

(
0 ,

1√
2
,
i√
2
, 1 , . . . , 1

)
.

Then T is a Schur multiplier which has no dilation.
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The noncommutative Rota dilation property

Definition (Junge, Le Merdy, Xu, 2006):

Let (M, τ ) be a (finite) von Neumann algebra with a normal, faithful

tracial state τ . A τ -Markov map T : M → M has the Rota dilation

property if there exists

• N von Neumann algebra with a normal faithful tracial state τN

• (Nn)n≥1 decreasing sequence of von Neumann subalgebras of N

• i : M ↪→ N trace-preserving embedding

such that for all n ≥ 1 , T n = i∗ ◦ ENn ◦ i , where ENn is the trace-

preserving conditional expectation of N onto Nn .

M
Tn

//

ι   B
BB

BB
BB

B M

N
ENn //Nn

ι∗

=={{{{{{{{

Remark: If T : M → M has the Rota dilation property, then T is

positive (as an operator on L2(M, τ )) and it is factorizable, since

T = i∗ ◦ EN1 ◦ i = (EN1 ◦ i)
∗ ◦ (EN1 ◦ i) .

The following is an example of a factorizable trace-preserving Markov

map on M2(C) which does not have the Rota dilation property. Set

T

(
x =

(
x11 x12
x21 x22

))
=

(
x11 −x12
−x21 x22

)
, x ∈M2(C) .

Then T ∈ Aut(M2(C)), and hence it is factorizable, but T is not

positive (as an operator on L2(M2(C) , τ2)).
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Theorem (Anantharaman-Delaroche, 2004):

If T : M → M is a factorizable Markov map and T ∗ = T , then T 2

has the Rota dilation property.

Remark: If M is abelian, then any Markov map T on M is factor-

izable. If, moreover, T = T ∗ , then the Rota dilation for T 2 in above

theorem can be chosen such that N is abelian. This is the classical

Rota dilation theorem.

Theorem 2 (Haagerup-M.):

For some large n ∈ N , there exists a Markov map T on (Mn(C) , τn)
such that T ∗ = T , but T 2 is not factorizable. In particular, T 2 does

not have the Rota dilation property.

Remark: By the result of Junge, Ricard, Shlyakhtenko/ Dabrowski,

if (Tt)t≥0 is a strongly cont. semigr. of self-adj. (M, τM)-Markov maps

on (M, τM), then Tt = (Tt/2)
2 has Rota dilation property for all t ≥ 0 .

Theorem 3 (Haagerup-M.):

Let M be a finite von Neumann algebra with normal faithful tracial

state τ , and let S : M →M be a τ -Markov map on M . TFAE:

(1) S has the Rota dilation property

(2) S has a Rota dilation of order 1

(3) S = T ∗T , where T : M → N is a factorizable (τ, τN)-Markov

map, for some vN alg. N with a normal faithful tracial state τN .
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Key Lemma in the proof of Theorem 2:

Let n, d ∈ N with d ≥ 5 and set

Tx : =

n∑
i=1

a∗ixai , x ∈Mn(C) ,

where a1 , . . . , ad ∈Mn(C) satisfy:
(1) ai = a∗i , 1 ≤ i ≤ d

(2)
∑d

i=1 a
2
i = 1

(3) a2iaj = aja
2
i , 1 ≤ i, j ≤ d

(4) A : = {aiaj : 1 ≤ i, j ≤ d} is linearly independent

(5) B : = ∪6
i=1Bi is linearly independent, where

B1 : = {aiajakal : i ̸= j ̸= k ̸= l} , B2 : = {aiaja2k : i ̸= j ̸= k ̸= k} ,
B3 : = {a3iaj : i ̸= j} , B4 : = {aia3j : i ̸= j} , B5 : = {a2ia2j : i < j} ,
B6 : = {a4i : 1 ≤ i ≤ d} .

Then T is a (Mn(C) , τn)-Markov map, but T 2 is not factorizable. In

particular, T 2 does not have the Rota dilation property.

Remark: Operators a1 , . . . , ad satisfying conditions (1)− (5) can be

realized in L∞(Sd−1)⊗̄L(Z2 ∗ . . . ∗ Z2) as

ai = bi ⊗ ui , 1 ≤ i ≤ d

where b1 , . . . , bd are the coordinate functions on S
d−1 (the unit sphere

in Rd) and u1 , . . . , ud ∈ L(Z2 ∗ . . . ∗Z2) are the self-adjoint unitaries

corresponding to the generators g1 , . . . , gd of Z2 ∗ . . . ∗Z2 . Using the

fact that this group is residually finite, it is possible to get examples of

n× n matrices a1 , . . . , ad satisfying (1)− (5) for large values of n .
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Further results

Recall the noncommutative little Grothendieck inequality (cb-version):

Theorem (Pisier–Shlyakhtenko, 2002, Haagerup-M, 2008):

Let A be a C∗-algebra. If T : A → OH(I) is a completely bounded

linear map, then there exist states f1 , f2 on A such that

∥T (x)∥ ≤
√
2∥T∥cbf1(xx∗)1/4f2(x∗x)1/4 , x ∈ A .

Problem: What is the best constant C0 in the inequality

∥T (x)∥ ≤ C∥T∥cbf1(xx∗)1/4f2(x∗x)1/4 , x ∈ A . (6)

for all choices of A and T .

Note: 1 ≤ C0 ≤
√
2 .

Theorem 4 (Haagerup-M): C0 > 1 .

More precisely,

(1) There exists T : M3(C) → OH({1, 2, 3}) such that (6) does not

hold with C = 1 , for any choice of states f1 , f2 .

(2) There exists T : l∞{1, 2, 3, 4} → OH({1, 2}) such that (6) does

not hold with C = 1 , for any choice of states f1 , f2 .
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Key Lemma in the proof of Theorem 2:

Let (A , τ ) be a finite dimensional C∗-algebra with a faithful tracial

state τ . Let d ∈ N , d ≥ 2 , and consider a1 , . . . , ad ∈ A satisfying∑d
i=1 a

∗
iai =

∑d
i=1 aia

∗
i = dI , τ (a∗iaj) = δij , for all 1 ≤ i, j ≤ d and,

moreover, the sets {a∗iaj , 1 ≤ i, j ≤ d} and {aia∗j , 1 ≤ i, j ≤ d} are

linearly independent. Define T : A→ OH(d) by

Tx : = (τ (a∗1x) , . . . , τ (a
∗
dx)) , x ∈ A .

Then ∥T∥cb < 1 , while the best constant in the inequality

∥Tx∥ ≤ Kf1(xx
∗)1/4f2(x

∗x)1/4 , x ∈ A

(for all choices of states f1 f2 ∈ A) is K = 1 .

Proof of Theorem 4: Use above Key Lemma with

(1) d = 3 , τ = τ3 , A =M3(C) ,

a1 =

√
3

2

 0 0 0

0 0 −1

0 1 0

 , a2 =

√
3

2

 0 0 1

0 0 0

−1 0 0


a3 =

√
3

2

 0 −1 0

1 0 0

0 0 0


(2) d = 2 , A = l∞({1, 2, 3, 4}) , τ (c) = 1

4(c1 + . . . + c4) , for all

c = (c1 , . . . , c4) ∈ C4 ,

a1 : =

(
√
2 ,

√
2

3
,

√
2

3
,

√
2

3

)
, a2 : =

(
0,

2√
3
,
2√
3
ω ,

2√
3
ω̄

)
.

where ω3 = 1 .
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On the asymptotic quantum Birkhoff conjecture

Classical Birkhoff theorem (Birkhoff, 1946):

Every doubly stochastic matrix is a convex combination of permuta-

tion matrices.

Consider the abelian von Neumann algebra D := l∞({1, 2, . . . , n})
with trace given by τ ({i}) = 1/n , 1 ≤ i ≤ n . The positive unital

trace-preserving maps on D are the linear operators on D which are

given by doubly stochastic n× n matrices. Note that every automor-

phism of D is given by a permutation of {1 , 2 , . . . , n} .

The quantum Birkhoff conjecture:

Does every completely positive unital trace-preserving map

T : (Mn(C), τn) → (Mn(C), τn) , n ≥ 1

lie in conv(Aut(Mn(C)) ?

This turns out to be false for n ≥ 3 (see, e.g, Example 1). For the case

n ≥ 4, this was first shown by Kümmerer and Maasen (1987), while

the case n = 3 was settled by Landau-Streater (1993).

The asymptotic quantum Birkhoff conjecture (A. Winter,

2005):

Let T : Mn(C) →Mn(C) be a τn-Markov map, n ≥ 1 . Then

lim
k→∞

dcb

(
k⊗
i=1

T , conv(Aut(
k⊗
i=1

Mn(C)))
)

= 0 . (7)
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Theorem 5 (Haagerup-M):

Let T : Mn(C) →Mn(C) be a τn-Markov map, n ≥ 1 . Then

dcb

(
k⊗
i=1

T , conv(Aut(
k⊗
i=1

Mn(C)))
)

≥ dcb(T, FM(Mn(C))) .

In particular, if T is not factorizable, then

dcb(T ,FM(Mn(C))) > 0 ,

since FM(Mn(C)) is closed. Therefore, the asymptotic quantum

Birkhoff conjecture does not hold for n ≥ 3 .

Proof: We show that given m,n ≥ 1 , then for any τn-Markov map

T on Mn(C) and any τm-Markov map S on Mm(C) ,

dcb(T ⊗ S, conv(Aut(Mn ⊗Mm)) ≥ dcb(T, FM(Mn(C))) .

Let i : Mn(C) →Mn(C)⊗Mm(C) be given by

i(x) : = x⊗ 1 , x ∈Mn(C) .

It is easily checked that i∗(T ⊗ S)i = T , where i∗ is the adjoint of i .

Since ∥i∥cb = ∥i∗∥cb = 1 , we get

dcb(T ⊗ S , conv(Aut(Mn ⊗Mm)) ≥ (8)

dcb(T, i
∗conv(Aut(Mn ⊗Mm))i) .

Since for every u ∈ U(Mn⊗Mm) , the map i∗◦ad(u)◦ i is factorizable,
and FM(Mn(C)) is a convex set, we deduce that

i∗conv(Aut(Mn ⊗Mm)i ⊂ FM(Mm(C)) ,

which together with (8) completes the proof.
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