Factorization and dilation problems for completely positive maps on von Neumann algebras

Magdalena Musat
University of Copenhagen
Joint work with Uffe Haagerup

Banff, July 1, 2010

Let (X, Σ, μ) be a probability space. An operator T on $L_{\infty}(X, \Sigma, \mu)$ is called Markov if T is a positive contraction, $T(1)=1\left(T^{*}(1)=1\right)$ and $\int T f d \mu=\int f d \mu$, for all $f \in L_{\infty}(X, \Sigma, \mu)$. Then T extends to a positive contraction on $L_{p}(X, \Sigma, \mu)$, for all $p \geq 1$.

Theorem (Rota, 1961):
(a) $\left(T^{n}\left(T^{*}\right)^{n}\right)_{n \geq 1}$ admits a dilation in terms of a martingale.
(b) $\left(T^{n}\left(T^{*}\right)^{n}\right)(f)$ converges a.s., for all $f \in L_{p}(X, \Sigma, \mu), p \geq 1$.

Idea of proof: On some probability space $(\Omega, \mathcal{F}, \nu)$, construct a Markov process associated with T. Imagine a particle located at $x_{0} \in$ X at time $t=0$, where $\operatorname{Prob}\left(x_{0} \in A_{0}\right)=\mu\left(A_{0}\right)$. At $t=1$ the particle jumps to a new location $x_{1} \in X$, with $\operatorname{Prob}\left(x_{1} \in A_{1}\right)=T\left(\chi_{A_{1}}\right)\left(x_{0}\right)$. From x_{1}, the particle jumps at $t=2$ to $x_{2} \in X$, with probability that only depends on x_{1}, not on x_{0}. And so on.
Model: $\Omega:=X^{\mathbb{N}}$ path (trajectory) space, $\mathcal{F}=$ product σ-algebra on $\Omega, \nu=$ Markov measure on \mathcal{F}. For $n \geq 0, X_{n}$ is a random variable given by $\left(x_{n}\right)_{n \geq 0} \in \Omega \mapsto x_{n} \in X$. Time evolution β is the shift operator on Ω. Define $\hat{\mathcal{F}}_{0}:=\left\{A_{0} \times X \times X \times \ldots: A_{0} \in \Sigma\right\}$ and for $n \geq 1, \mathcal{F}_{n}:=\{X \times \ldots \times X \times S: S \in \mathcal{F}\}$. Clearly

$$
\ldots \subseteq \mathcal{F}_{n+1} \subseteq \mathcal{F}_{n} \subseteq \ldots \subseteq \mathcal{F}_{1} \subseteq \mathcal{F}_{0}:=\mathcal{F} .
$$

Let $\iota: \Omega \rightarrow X$ be defined by $\iota\left(x_{0}, x_{1}, \ldots\right):=x_{0}$. Then ι extends to an isomorphism $\iota: L_{p}\left(\Omega, \hat{\mathcal{F}}_{0}, \nu\right) \rightarrow L_{p}(X, \Sigma, \mu)$, and we get

$$
\left(\iota^{*} \circ\left(T^{n}\left(T^{*}\right)^{n}\right) \circ \iota\right)(f)=\hat{\mathbb{E}}\left(\mathbb{E}_{n}(f)\right), \quad n \geq 1
$$

for all $f \in L_{p}\left(\Omega, \hat{\mathcal{F}}_{0}, \nu\right)$, where $\mathbb{E}_{n}:=\mathbb{E}\left(\cdot \mid \mathcal{F}_{n}\right), \hat{\mathbb{E}}:=\mathbb{E}\left(\cdot \mid \hat{\mathcal{F}}_{0}\right)$.

Definition (Anantharaman-Delaroche, 2004):
Let (M, ϕ) and (N, ψ) be von Neumann algebras with normal, faithful states ϕ, ψ. A linear map $T: M \rightarrow N$ is called (ϕ, ψ)-Markov map if

- T is completely positive
- $T\left(1_{M}\right)=1_{N}$
- $\psi \circ T=\phi$
- $T \circ \sigma_{t}^{\phi}=\sigma_{t}^{\psi} \circ T, \quad t \in \mathbb{R}$.

If $(M, \phi)=(N, \psi)$, then T is called a ϕ-Markov map on M.

Remark: A (ϕ, ψ)-Markov map $T: M \rightarrow N$ has an $\operatorname{adjoint}(\psi, \phi)$ Markov map $T^{*}: N \rightarrow M$, uniquely determined by

$$
\psi(y T(x))=\phi\left(T^{*}(y) x\right), \quad x \in M, y \in N
$$

A noncommutative Kolmogorov-Daniell construction

Given a ϕ-Markov map T on (M, ϕ), find a von Neumann algebra P with a n. f. state χ, a time evolution endomorphism $\beta: P \rightarrow P$ and a normal, injective $*$-homomorphism $J_{0}: M \hookrightarrow P$ such that

$$
\begin{equation*}
\beta \text { is } \chi \text { - Markov }, \quad J_{0} \text { is }(\phi, \chi)-\text { Markov } \tag{1}
\end{equation*}
$$

and, if $\mathbb{E}_{n]}$ and $\mathbb{E}_{[n}$ are the conditional expectations on $P_{n]}$ and $P_{[n}$, respectively, where $P_{n]}:=\bigvee_{k \leq n} J_{k}(M), P_{[n}:=\bigvee_{k \geq n} J_{k}(M)$ and $J_{k}:=\beta^{k} \circ J_{0}$, then $\left(P, \beta, J_{0},\left(\mathbb{E}_{n]}\right)_{n \geq 0}\right)$ is a quantum Markov process satisfying for all $n \geq 0$

$$
\begin{align*}
& \mathbb{E}_{n]} \circ J_{q}=J_{n} \circ T^{q-n}, \quad q \geq n \tag{2}\\
& \mathbb{E}_{[n} \circ J_{0}=J_{n} \circ\left(T^{*}\right)^{n} . \tag{3}
\end{align*}
$$

Note: Such a construction for a unital completely positive map on a unital C^{*}-algebra M satisfying (2) has been carried out by Sauvageot (1986). However, condition (1) does not appear to be satisfied. Also, here we insist on (3) being satisfied, as well, since then we obtain

$$
J_{0} \circ T^{n} \circ\left(T^{*}\right)^{n}=\mathbb{E}_{0]} \circ \mathbb{E}_{[n} \circ J_{0}
$$

Further, since $J_{0}^{*}=J_{0}^{-1} \circ \mathbb{E}_{0]}$, this implies that

$$
T^{n} \circ\left(T^{*}\right)^{n}=J_{0}^{*} \circ \mathbb{E}_{[n} \circ J_{0}, \quad n \geq 1
$$

A similar reasoning as in the proof of the classical theorem of Rota (using noncommmutative versions of martingale inequalities) yields convergence of $\left(T^{n} \circ\left(T^{*}\right)^{n}\right)(x)$ "a.s." $x \in L_{p}(M, \phi)$.
C. Anantharaman-Delaroche (2004) proved that a noncommutative Kolmogorov-Daniell construction satisfying all conditions (1) - (3) is possible if and only if the ϕ-Markov map $T: M \rightarrow M$ is factorizable.

Definition (Anantharaman-Delaroche, 2004):
A (ϕ, ψ)-Markov map $T: M \rightarrow N$ is called factorizable if there exists a von Neumann algebra P with a normal, faithful state χ and injective *-homomorphisms $\alpha: M \rightarrow P$ and $\beta: N \rightarrow P$ such that
α is $(\phi, \chi)-$ Markov, β is $(\psi, \chi)-$ Markov and $T=\beta^{*} \circ \alpha$.

Note that $\beta^{*}=\beta^{-1} \circ \mathbb{E}_{\beta(N)}$.

Remark: By $(2), \mathbb{E}_{0]} \circ J_{1}=J_{0} \circ T$, which implies that $T=J_{0}^{*} \circ J_{1}$.

Remark: The set of factorizable ϕ-Markov maps on M is convex, and it is closed under composition and taking adjoints.

It can be shown that every Markov map between abelian von Neumann algebras is factorizable.

Problem (Anantharaman-Delaroche, 2004):
Is every Markov map factorizable?

Markov maps on $\left.\left(M_{n}(\mathbb{C}), \tau_{n}\right)\right)$
Here τ_{n} is the normalized trace on $M_{n}(\mathbb{C})$.
Let $T: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ be a $\left(M_{n}(\mathbb{C}), \tau_{n}\right)$-Markov map, i.e., T is completely positive, $T(1)=1$ and $\tau_{n} \circ T=\tau_{n}$. By a result of Choi (1973), T is completely positive if and only if

$$
T x=\sum_{i=1}^{d} a_{i}^{*} x a_{i}, \quad x \in M_{n}(\mathbb{C})
$$

where $a_{1}, \ldots, a_{d} \in M_{n}(\mathbb{C})$ can be chosen to be linearly independent. Then, the condition $T(1)=1$ is equivalent to $\sum_{i=1}^{d} a_{i}^{*} a_{i}=1$, while the condition $\tau_{n} \circ T=\tau_{n}$ is equivalent to $\sum_{i=1}^{d} a_{i} a_{i}^{*}=1$.

Result (Kümmerer, 1983): Every $\left(M_{2}(\mathbb{C}), \tau_{2}\right)$-Markov map lies in $\operatorname{conv}\left(\operatorname{Aut}\left(M_{2}(\mathbb{C})\right)\right)$, hence it is factorizable.

Theorem 1 (Haagerup-M.):

Let $T: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ be a $\left(M_{n}(\mathbb{C}), \tau_{n}\right)$-Markov map, written in the form

$$
\begin{equation*}
T x=\sum_{i=1}^{d} a_{i}^{*} x a_{i}, \quad x \in M_{n}(\mathbb{C}) \tag{4}
\end{equation*}
$$

where $a_{1}, \ldots, a_{d} \in M_{n}(\mathbb{C})$ are linearly independent.

The following are equivalent:

1) T is factorizable
2) There exists a finite von Neumann algebra N with a normal faithful tracial state τ_{N} and a unitary $u \in M_{n}(N)$ such that

$$
T x=\left(\mathrm{id}_{M_{n}(\mathbb{C})} \otimes \tau_{N}\right)\left(u^{*}(x \otimes 1) u\right), \quad x \in M_{n}(\mathbb{C})
$$

3) There exists a finite von Neumann algebra N with a normal faithful tracial state τ_{N} and $v_{1}, \ldots, v_{d} \in N$ such that $u:=\sum_{i=1}^{d} a_{i} \otimes v_{i}$ is a unitary operator in $M_{n}(\mathbb{C}) \otimes N$ and

$$
\tau_{N}\left(v_{i}^{*} v_{j}\right)=\delta_{i j}, \quad 1 \leq i, j \leq d
$$

Corollary 1:

Let $T: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ be a $\left(M_{n}(\mathbb{C}), \tau_{n}\right)$-Markov map of the form (4), where $a_{1}, \ldots, a_{d} \in M_{n}(\mathbb{C})$. If $d \geq 2$ and the set

$$
\left\{a_{i}^{*} a_{j}: 1 \leq i, j \leq d\right\}
$$

is linearly independent, then T is not factorizable.

Proof of Corollary 1:

Assume that T is factorizable. By Theorem 1, there exists a finite von Neumann algebra N with a normal faithful tracial state τ_{N} and $v_{1}, \ldots, v_{d} \in N$ such that $u:=\sum_{i=1}^{d} a_{i} \otimes v_{i}$ is unitary. Since $\sum_{i=1}^{d} a_{i}^{*} a_{i}=1$, it follows that

$$
\sum_{i, j=1}^{d} a_{i}^{*} a_{j} \otimes\left(v_{i}^{*} v_{j}-\delta_{i j} 1_{N}\right)=u^{*} u-\left(\sum_{i=1}^{d} a_{i}^{*} a_{i}\right) \otimes 1_{N}=0
$$

By the linear independence of the set $\left\{a_{i}^{*} a_{j}: 1 \leq i, j \leq d\right\}$,

$$
v_{i}^{*} v_{j}-\delta_{i j} 1_{N}=0, \quad 1 \leq i, j \leq d .
$$

Since $d \geq 2$, it follows in particular that

$$
v_{1}^{*} v_{1}=v_{2}^{*} v_{2}=1, \quad v_{1}^{*} v_{2}=0 .
$$

Since N is finite, v_{1} and v_{2} are unitary operators, which gives rise to a contradiction. This proves that T is not factorizable.

Example 1 (Haagerup-M.): Set

$$
\begin{gathered}
a_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right), \quad a_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right) \\
a_{3}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

Then $\sum_{i=1}^{3} a_{i}^{*} a_{i}=\sum_{i=1}^{3} a_{i} a_{i}^{*}=1$. Hence the operator T defined by

$$
T x:=\sum_{i=1}^{3} a_{i}^{*} x a_{i}, \quad x \in M_{3}(\mathbb{C})
$$

is a $\left(M_{3}(\mathbb{C}), \tau_{3}\right)$-Markov map. The set

$$
\left\{a_{i}^{*} a_{j}: 1 \leq i, j \leq 3\right\}
$$

is linearly independent. Hence, by Corollary $1, T$ is not factorizable.

Remark: Let $\mathcal{F} \mathcal{M}\left(M_{n}(\mathbb{C})\right)$ be the set of factorizable $\left(M_{n}(\mathbb{C}), \tau_{n}\right)$ Markov maps. Since all automorphisms of $M_{n}(\mathbb{C})$ are inner,

$$
\begin{equation*}
\operatorname{conv}\left(\operatorname{Aut}\left(M_{n}(\mathbb{C})\right)\right) \subseteq \mathcal{F} \mathcal{M}\left(M_{n}(\mathbb{C}), \tau_{n}\right) \tag{5}
\end{equation*}
$$

Question: Is the inclusion (5) strict?

Proposition 1 (Haagerup-M.):
Let $T: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ be a $\left(M_{n}(\mathbb{C}), \tau_{n}\right)$-Markov map written in the form

$$
T x=\sum_{i=1}^{d} a_{i}^{*} x a_{i}, \quad x \in M_{n}(\mathbb{C}),
$$

where $a_{1}, \ldots, a_{d} \in M_{n}(\mathbb{C})$ are linearly independent. Then the following conditions are equivalent:
(a) $T \in \operatorname{conv}\left(\operatorname{Aut}\left(M_{n}(\mathbb{C})\right)\right.$.
(b) T satisfies condition 2) of Theorem 1 with N abelian.
(c) T satisfies condition 3) of Theorem 1 with N abelian.

Corollary 2 :

Let $T: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ be a $\left(M_{n}(\mathbb{C}), \tau_{n}\right)$-Markov map of the form

$$
T x=\sum_{i=1}^{d} a_{i}^{*} x a_{i}, \quad x \in M_{n}(\mathbb{C})
$$

where $a_{1}, \ldots, a_{d} \in M_{n}(\mathbb{C})$ are self-adjoint, $\sum_{i=1}^{d} a_{i}^{2}=1$ and satisfy $a_{i} a_{j}=a_{j} a_{i}, 1 \leq i, j \leq d$. Then the following hold:
(a) T is factorizable.
(b) If $d \geq 3$ and the set $\left\{a_{i} a_{j}: 1 \leq i \leq j \leq d\right\}$ is linearly independent, then $T \notin \operatorname{conv}\left(\operatorname{Aut}\left(M_{n}(\mathbb{C})\right)\right)$.

Schur multipliers

If $B=\left(b_{i j} j_{i, j=1}^{n}\right.$ is a positive semi-definite matrix, then the map

$$
\begin{gathered}
T_{B}: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C}) \\
T_{B}(x):=\left(b_{i j} x_{i j}\right)_{1 \leq i, j \leq n}, \quad x=\left(x_{i j}\right)_{i, j=1}^{n} \in M_{n}(\mathbb{C})
\end{gathered}
$$

is called the Schur multiplier associated to the matrix B. Note that T_{B} is completely positive. If, moreover,

$$
b_{11}=b_{22}=\ldots=b_{n n}=1,
$$

then $T_{B}(1)=1$ and $\tau_{n} \circ T_{B}=\tau_{n}$. Hence T_{B} is $\left(M_{n}(\mathbb{C}), \tau_{n}\right)$-Markov. There exist lin. independent $n \times n$ diagonal matrices $a_{1}, \ldots a_{d}$ so that

$$
T_{B}(x)=\sum_{i=1}^{d} a_{i}^{*} x a_{i}, \quad x \in M_{n}(\mathbb{C}) .
$$

If the entries of B are real, then $a_{i}^{*}=a_{i}$ and $\sum_{i=1}^{d} a_{i}^{2}=1$. By Corollary $2, T_{B}$ is factorizable. (This is a result of Ricard, 2007.)

Example 2 (Haagerup-M.): Let $\beta=1 / \sqrt{5}$ and set

$$
B:=\left(\begin{array}{cccccc}
1 & \beta & \beta & \beta & \beta & \beta \\
\beta & 1 & \beta & -\beta & -\beta & \beta \\
\beta & \beta & 1 & \beta & -\beta & -\beta \\
\beta & -\beta & \beta & 1 & \beta & -\beta \\
\beta & -\beta & -\beta & \beta & 1 & \beta \\
\beta & \beta & -\beta & -\beta & \beta & 1
\end{array}\right) .
$$

Then T_{B} satisfies the hypotheses of Corollary 2 , hence T_{B} is a factorizable Markov map on $M_{6}(\mathbb{C})$, but $T_{B} \notin \operatorname{conv}\left(\operatorname{Aut}\left(M_{6}(\mathbb{C})\right)\right)$.

Example 3 (Haagerup-M.): Let $0<s<1$ and set

$$
B(s):=\left(\begin{array}{cccc}
1 & \sqrt{s} & \sqrt{s} & \sqrt{s} \\
\sqrt{s} & s & s & s \\
\sqrt{s} & s & s & s \\
\sqrt{s} & s & s & s
\end{array}\right)+(1-s)\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & \omega & \bar{\omega} \\
0 & \bar{\omega} & 1 & \omega \\
0 & \omega & \bar{\omega} & 1
\end{array}\right)
$$

where $\omega=e^{i 2 \pi / 3}=-1 / 2+i \sqrt{3} / 2$ and $\bar{\omega}$ is its complex conjugate. Then $B(s)$ is positive semi-definite matrix of rank 2 (cf. Christensen and Vesterstrøm). Moreover,

$$
T_{B(s)}(x)=\sum_{i=1}^{2} a_{i}(s)^{*} x a_{i}(s), \quad x \in M_{4}(\mathbb{C})
$$

where $a_{1}(s)=\operatorname{diag}(1, \sqrt{s}, \sqrt{s}, \sqrt{s}), a_{2}(s)=\sqrt{1-s} \operatorname{diag}(0,1, \omega, \bar{\omega})$. The set $\left\{a_{i}^{*} a_{j}: i, j=1,2\right\}$ is linearly independent, hence $T_{B(s)}$ is not factorizable, by Corollary 1.

Furthermore, set

$$
L=\left.\frac{d B(s)}{d s}\right|_{s=1}=\frac{1}{2}\left(\begin{array}{cccc}
0 & 1 & 1 & 1 \\
1 & 0 & 3-i \sqrt{3} & 3+i \sqrt{3} \\
1 & 3+i \sqrt{3} & 0 & 3-i \sqrt{3} \\
1 & 3-i \sqrt{3} & 3+i \sqrt{3} & 0
\end{array}\right)
$$

Then

$$
N(t):=\left(e^{-L_{i j} t}\right)_{1 \leq i, j \leq 4}, \quad t \geq 0
$$

is a semigroup of positive definite matrices having 1 on the diagonal. Hence

$$
T(t):=T_{N(t)}, \quad t \geq 0
$$

is a semigroup of Schur multipliers which are $\left(M_{4}(\mathbb{C}), \tau_{4}\right)$-Markov maps. For $t>0, N(t)$ has rank 4, and therefore Corollary 1 cannot be applied. Using a different method we can obtain from Theorem 1 that there exists $t_{0}>0$ such that $T(t)$ is not factorizable, for any $0<t<t_{0}$.

Remarks:

By a result of Kümmerer and Maassen (1987), it follows that if

$$
T(t):=e^{-L t}, \quad t \geq 0
$$

is a one-parameter semigroup of $\left(M_{n}(\mathbb{C}), \tau_{n}\right)$-Markov maps satisfying

$$
T(t)^{*}=T(t), \quad t \geq 0
$$

then $T(t) \in \operatorname{conv}\left(\operatorname{Aut}\left(M_{n}(\mathbb{C})\right)\right)$, for all $t \geq 0$. In particular,

$$
T(t) \text { is factorizable, } \quad t \geq 0 .
$$

In very recent work, Junge, Ricard and Shlyakhtenko have generalized the result of Kümmerer and Maassen, by showing that if $\left(T_{t}\right)_{t \geq 0}$ is a strongly continuous one-parameter semigroup of $\left(M, \tau_{M}\right)$-Markov maps (with $T_{0}=\operatorname{id}_{M}$) on an arbitrary finite von Neumann algebra M with a faithful, normal tracial state τ_{M}, satisfying

$$
T(t)^{*}=T(t), \quad t \geq 0
$$

then $T(t)$ is factorizable, for all $t \geq 0$. This result has been obtained independently (by different methods) by Yoann Dabrowski.

Further related results
Dykema and Jushenko (2009) considered the following sets for $n \geq 1$:

$$
\begin{aligned}
\mathcal{F}_{n}:= & \overline{\bigcup_{k \geq 1}\left\{B=\left(b_{i j}\right) \in M_{n}(\mathbb{C}): b_{i j}=\tau_{k}\left(u_{i} u_{j}^{*}\right), u_{1}, \ldots, u_{n} \in \mathcal{U}\left(M_{k}(\mathbb{C})\right)\right\}} \\
\mathcal{G}_{n}:= & \left\{B=\left(b_{i j}\right) \in M_{n}(\mathbb{C}): b_{i j}=\tau_{M}\left(u_{i} u_{j}^{*}\right), u_{1}, \ldots, u_{n} \in \mathcal{U}(M),\right. \text { for } \\
& \text { some } \left.\left(M, \tau_{M}\right) \text { von Neumann algebra with n.f. tracial state } \tau_{M}\right\}
\end{aligned}
$$

By results of Kirchberg (1993), Connes' embedding conjecture holds if and only if

$$
\mathcal{F}_{n}=\mathcal{G}_{n}, \quad \text { for all } n \geq 1
$$

Consider further the set
$\Theta:=\left\{B=\left(b_{i j}\right) \in M_{n}(\mathbb{C}): B\right.$ positive semidefinite, $\left.b_{i i}=1,1 \leq i \leq n\right\}$.
It is clear that

$$
\mathcal{F}_{n} \subseteq \mathcal{G}_{n} \subseteq \Theta_{n}, \quad n \geq 1
$$

Question: Is it true that $\mathcal{F}_{n}=\Theta_{n}$, for all $n \geq 1$?
Dykema and Jushenko proved that the answer is NO if $n \geq 4$. More precisely, in the case $n=4$, they proved that \mathcal{G}_{4} has no extreme points of rank 2, while there are extreme points of rank 2 in Θ_{4}. Hence $\mathcal{G}_{4} \neq \Theta_{4}$.

Connection with factorizability
As a consequence of Theorem 1 ,

$$
\mathcal{G}_{n}=\left\{B \in \Theta_{n}: T_{B} \text { is factorizable }\right\}, \quad n \geq 1
$$

On the connection between Anantharaman-Delaroche's work and Kümmerer's work (Communicated by Claus Koestler, May 2008)

Definition (Kümmerer, JFA 1985):
Let (M, ϕ) be a von Neumann algebra with a normal, faithful state ϕ. A ϕ-Markov map $T: M \rightarrow M$ has a dilation if there exists

- (N, ψ) von Neumann algebra with a normal faithful state ψ
- $i: M \rightarrow N(\phi, \psi)$-Markov injective $*$-homomorphism
- $\alpha \in \operatorname{Aut}(N, \psi)$
such that $T^{n}=i^{*} \circ \alpha^{n} \circ i$, for all $n \geq 1$.

Combining results from Anantharaman-Delaroche (2004) with results from Kümmerer's unpublished Habilitationsschrift (1986), one gets the following

Theorem (Anantharaman-Delaroche, $2004+$ Kümmerer, 1986):
Let $T: M \rightarrow M$ be a ϕ-Markov map. The following are equivalent:
(1) T is factorizable.
(2) T has a dilation.

Proof:

The implication (2) $\Rightarrow(1)$ is elementary, because if (2) holds, then

$$
T=i^{*} \circ(\alpha \circ i),
$$

where both $\alpha \circ i$ and i are (ϕ, ψ)-Markov injective $*$-homomorphisms of M into N.

We now show that $(1) \Rightarrow(2)$.
Anantharaman-Delaroche (2004) proved that if T is factorizable, then there exists (N, ψ) a von Neumann algebra N with a normal, faithful state ψ, an injective $*$-homomorphism $i: M \rightarrow N$ which is (ϕ, ψ) Markov, and a (ψ, ψ)-Markov injective $*$-homomorphism $\beta: N \rightarrow N$ such that

$$
T^{n}=i^{*} \circ \beta^{n} \circ i, \quad n \geq 1
$$

However, using a result of Kümmerer from his Habilitationsschrift (1986), one can extend β to a $\tilde{\psi}$-preserving automorphism α on a larger von Neumann algebra \tilde{N}, namely

$$
(\tilde{N}, \tilde{\psi})=\text { inductive limit of }(N, \psi) \xrightarrow{\beta}(N, \psi) \xrightarrow{\beta} \ldots
$$

such that $\tilde{i}: M \rightarrow N \subseteq \tilde{N}$ becomes a $(\phi, \tilde{\psi})$-Markov injective *homomorphism and

$$
T^{n}=(\tilde{i})^{*} \circ \alpha^{n} \circ \tilde{i}, \quad n \geq 1 .
$$

Hence T has a dilation.

In his Habilitationsschrift (1986), Kümmerer constructs examples of τ_{n}-Markov maps on $M_{n}(\mathbb{C})$ having no dilation. His examples are similar to our examples 1 and 3, but he does not consider the one-parameter semigroup case.

Proposition (Kümmerer, 1986):
(1) Let $T: M_{3}(\mathbb{C}) \rightarrow M_{3}(\mathbb{C})$ be the τ_{3}-Markov map

$$
T x:=\sum_{i=1}^{3} a_{i}^{*} x a_{i}, \quad x \in M_{3}(\mathbb{C})
$$

where

$$
\begin{gathered}
a_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad a_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \\
a_{3}=\frac{1}{\sqrt{2}}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)
\end{gathered}
$$

Then T has no dilation.
(2) Let $n \geq 4$ and $T: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ be the τ_{n}-Markov map

$$
T x:=\sum_{i=1}^{2} a_{i}^{*} x a_{i}, \quad x \in M_{n}(\mathbb{C})
$$

where
$a_{1}=\operatorname{diag}\left(1, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, \ldots, 0\right), a_{2}=\operatorname{diag}\left(0, \frac{1}{\sqrt{2}}, \frac{i}{\sqrt{2}}, 1, \ldots, 1\right)$.
Then T is a Schur multiplier which has no dilation.

The noncommutative Rota dilation property

Definition (Junge, Le Merdy, Xu, 2006):
Let (M, τ) be a (finite) von Neumann algebra with a normal, faithful tracial state τ. A τ-Markov map $T: M \rightarrow M$ has the Rota dilation property if there exists

- N von Neumann algebra with a normal faithful tracial state τ_{N}
- $\left(N_{n}\right)_{n \geq 1}$ decreasing sequence of von Neumann subalgebras of N
- $i: M \hookrightarrow N$ trace-preserving embedding
such that for all $n \geq 1, T^{n}=i^{*} \circ E_{N_{n}} \circ i$, where $E_{N_{n}}$ is the tracepreserving conditional expectation of N onto N_{n}.

Remark: If $T: M \rightarrow M$ has the Rota dilation property, then T is positive (as an operator on $L_{2}(M, \tau)$) and it is factorizable, since

$$
T=i^{*} \circ E_{N_{1}} \circ i=\left(E_{N_{1}} \circ i\right)^{*} \circ\left(E_{N_{1}} \circ i\right)
$$

The following is an example of a factorizable trace-preserving Markov map on $M_{2}(\mathbb{C})$ which does not have the Rota dilation property. Set

$$
T\left(x=\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right)\right)=\left(\begin{array}{cc}
x_{11} & -x_{12} \\
-x_{21} & x_{22}
\end{array}\right), \quad x \in M_{2}(\mathbb{C})
$$

Then $T \in \operatorname{Aut}\left(M_{2}(\mathbb{C})\right)$, and hence it is factorizable, but T is not positive (as an operator on $L_{2}\left(M_{2}(\mathbb{C}), \tau_{2}\right)$).

Theorem (Anantharaman-Delaroche, 2004):
If $T: M \rightarrow M$ is a factorizable Markov map and $T^{*}=T$, then T^{2} has the Rota dilation property.

Remark: If M is abelian, then any Markov map T on M is factorizable. If, moreover, $T=T^{*}$, then the Rota dilation for T^{2} in above theorem can be chosen such that N is abelian. This is the classical Rota dilation theorem.

Theorem 2 (Haagerup-M.):
For some large $n \in \mathbb{N}$, there exists a Markov map T on $\left(M_{n}(\mathbb{C}), \tau_{n}\right)$ such that $T^{*}=T$, but T^{2} is not factorizable. In particular, T^{2} does not have the Rota dilation property.

Remark: By the result of Junge, Ricard, Shlyakhtenko/ Dabrowski, if $\left(T_{t}\right)_{t \geq 0}$ is a strongly cont. semigr. of self-adj. $\left(M, \tau_{M}\right)$-Markov maps on $\left(M, \tau_{M}\right)$, then $T_{t}=\left(T_{t / 2}\right)^{2}$ has Rota dilation property for all $t \geq 0$.

Theorem 3 (Haagerup-M.):

Let M be a finite von Neumann algebra with normal faithful tracial state τ, and let $S: M \rightarrow M$ be a τ-Markov map on M. TFAE:
(1) S has the Rota dilation property
(2) S has a Rota dilation of order 1
(3) $S=T^{*} T$, where $T: M \rightarrow N$ is a factorizable $\left(\tau, \tau_{N}\right)$-Markov map, for some vN alg. N with a normal faithful tracial state τ_{N}.

Key Lemma in the proof of Theorem 2:
Let $n, d \in \mathbb{N}$ with $d \geq 5$ and set

$$
T x:=\sum_{i=1}^{n} a_{i}^{*} x a_{i}, \quad x \in M_{n}(\mathbb{C}),
$$

where $a_{1}, \ldots, a_{d} \in M_{n}(\mathbb{C})$ satisfy:
(1) $a_{i}=a_{i}^{*}, 1 \leq i \leq d$
(2) $\sum_{i=1}^{d} a_{i}^{2}=1$
(3) $a_{i}^{2} a_{j}=a_{j} a_{i}^{2}, 1 \leq i, j \leq d$
(4) $A:=\left\{a_{i} a_{j}: 1 \leq i, j \leq d\right\}$ is linearly independent
(5) $B:=\cup_{i=1}^{6} B_{i}$ is linearly independent, where
$B_{1}:=\left\{a_{i} a_{j} a_{k} a_{l}: i \neq j \neq k \neq l\right\}, B_{2}:=\left\{a_{i} a_{j} a_{k}^{2}: i \neq j \neq k \neq k\right\}$, $B_{3}:=\left\{a_{i}^{3} a_{j}: i \neq j\right\}, B_{4}:=\left\{a_{i} a_{j}^{3}: i \neq j\right\}, B_{5}:=\left\{a_{i}^{2} a_{j}^{2}: i<j\right\}$, $B_{6}:=\left\{a_{i}^{4}: 1 \leq i \leq d\right\}$.
Then T is a $\left(M_{n}(\mathbb{C}), \tau_{n}\right)$-Markov map, but T^{2} is not factorizable. In particular, T^{2} does not have the Rota dilation property.

Remark: Operators a_{1}, \ldots, a_{d} satisfying conditions (1) - (5) can be realized in $L_{\infty}\left(S^{d-1}\right) \bar{\otimes} L\left(\mathbb{Z}_{2} * \ldots * \mathbb{Z}_{2}\right)$ as

$$
a_{i}=b_{i} \otimes u_{i}, \quad 1 \leq i \leq d
$$

where b_{1}, \ldots, b_{d} are the coordinate functions on S^{d-1} (the unit sphere in $\left.\mathbb{R}^{d}\right)$ and $u_{1}, \ldots, u_{d} \in L\left(\mathbb{Z}_{2} * \ldots * \mathbb{Z}_{2}\right)$ are the self-adjoint unitaries corresponding to the generators g_{1}, \ldots, g_{d} of $\mathbb{Z}_{2} * \ldots * \mathbb{Z}_{2}$. Using the fact that this group is residually finite, it is possible to get examples of $n \times n$ matrices a_{1}, \ldots, a_{d} satisfying (1) - (5) for large values of n.

Further results

Recall the noncommutative little Grothendieck inequality (cb-version):

Theorem (Pisier-Shlyakhtenko, 2002, Haagerup-M, 2008):
Let A be a C^{*}-algebra. If $T: A \rightarrow O H(I)$ is a completely bounded linear map, then there exist states f_{1}, f_{2} on A such that

$$
\|T(x)\| \leq \sqrt{2}\|T\|_{\mathrm{cb}} f_{1}\left(x x^{*}\right)^{1 / 4} f_{2}\left(x^{*} x\right)^{1 / 4}, \quad x \in A .
$$

Problem: What is the best constant C_{0} in the inequality

$$
\begin{equation*}
\|T(x)\| \leq C\|T\|_{\text {cb }} f_{1}\left(x x^{*}\right)^{1 / 4} f_{2}\left(x^{*} x\right)^{1 / 4}, \quad x \in A . \tag{6}
\end{equation*}
$$

for all choices of A and T.

Note: $1 \leq C_{0} \leq \sqrt{2}$.

Theorem 4 (Haagerup-M): $\quad C_{0}>1$.
More precisely,
(1) There exists $T: M_{3}(\mathbb{C}) \rightarrow O H(\{1,2,3\})$ such that (6) does not hold with $C=1$, for any choice of states f_{1}, f_{2}.
(2) There exists $T: l_{\infty}\{1,2,3,4\} \rightarrow O H(\{1,2\})$ such that (6) does not hold with $C=1$, for any choice of states f_{1}, f_{2}.

Key Lemma in the proof of Theorem 2:
Let (A, τ) be a finite dimensional C^{*}-algebra with a faithful tracial state τ. Let $d \in \mathbb{N}, d \geq 2$, and consider $a_{1}, \ldots, a_{d} \in A$ satisfying $\sum_{i=1}^{d} a_{i}^{*} a_{i}=\sum_{i=1}^{d} a_{i} a_{i}^{*}=d I, \tau\left(a_{i}^{*} a_{j}\right)=\delta_{i j}$, for all $1 \leq i, j \leq d$ and, moreover, the sets $\left\{a_{i}^{*} a_{j}, 1 \leq i, j \leq d\right\}$ and $\left\{a_{i} a_{j}^{*}, 1 \leq i, j \leq d\right\}$ are linearly independent. Define $T: A \rightarrow O H(d)$ by

$$
T x:=\left(\tau\left(a_{1}^{*} x\right), \ldots, \tau\left(a_{d}^{*} x\right)\right), \quad x \in A .
$$

Then $\|T\|_{\mathrm{cb}}<1$, while the best constant in the inequality

$$
\|T x\| \leq K f_{1}\left(x x^{*}\right)^{1 / 4} f_{2}\left(x^{*} x\right)^{1 / 4}, \quad x \in A
$$

(for all choices of states $f_{1} f_{2} \in A$) is $K=1$.

Proof of Theorem 4: Use above Key Lemma with
(1) $d=3, \tau=\tau_{3}, A=M_{3}(\mathbb{C})$,

$$
\begin{gathered}
a_{1}=\sqrt{\frac{3}{2}}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right), \quad a_{2}=\sqrt{\frac{3}{2}}\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right) \\
a_{3}=\sqrt{\frac{3}{2}}\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

(2) $d=2, A=l_{\infty}(\{1,2,3,4\}), \tau(c)=\frac{1}{4}\left(c_{1}+\ldots+c_{4}\right)$, for all $c=\left(c_{1}, \ldots, c_{4}\right) \in \mathbb{C}^{4}$,

$$
a_{1}:=\left(\sqrt{2}, \sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}}\right), \quad a_{2}:=\left(0, \frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}} \omega, \frac{2}{\sqrt{3}} \bar{\omega}\right) .
$$

where $\omega^{3}=1$.

On the asymptotic quantum Birkhoff conjecture

Classical Birkhoff theorem (Birkhoff, 1946):

Every doubly stochastic matrix is a convex combination of permutation matrices.

Consider the abelian von Neumann algebra $D:=l_{\infty}(\{1,2, \ldots, n\})$ with trace given by $\tau(\{i\})=1 / n, 1 \leq i \leq n$. The positive unital trace-preserving maps on D are the linear operators on D which are given by doubly stochastic $n \times n$ matrices. Note that every automorphism of D is given by a permutation of $\{1,2, \ldots, n\}$.

The quantum Birkhoff conjecture:

Does every completely positive unital trace-preserving map

$$
T:\left(M_{n}(\mathbb{C}), \tau_{n}\right) \rightarrow\left(M_{n}(\mathbb{C}), \tau_{n}\right), \quad n \geq 1
$$

lie in $\operatorname{conv}\left(\operatorname{Aut}\left(M_{n}(\mathbb{C})\right)\right.$?
This turns out to be false for $n \geq 3$ (see, e.g, Example 1). For the case $n \geq 4$, this was first shown by Kümmerer and Maasen (1987), while the case $n=3$ was settled by Landau-Streater (1993).

The asymptotic quantum Birkhoff conjecture (A. Winter, 2005):

Let $T: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ be a τ_{n}-Markov map, $n \geq 1$. Then

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d_{\mathrm{cb}}\left(\bigotimes_{i=1}^{k} T, \operatorname{conv}\left(\operatorname{Aut}\left(\bigotimes_{i=1}^{k} M_{n}(\mathbb{C})\right)\right)\right)=0 \tag{7}
\end{equation*}
$$

Theorem 5 (Haagerup-M):

Let $T: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ be a τ_{n}-Markov map, $n \geq 1$. Then

$$
d_{\mathrm{cb}}\left(\bigotimes_{i=1}^{k} T, \operatorname{conv}\left(\operatorname{Aut}\left(\bigotimes_{i=1}^{k} M_{n}(\mathbb{C})\right)\right)\right) \geq d_{\mathrm{cb}}\left(T, \mathcal{F} \mathcal{M}\left(M_{n}(\mathbb{C})\right)\right)
$$

In particular, if T is not factorizable, then

$$
d_{\mathrm{cb}}\left(T, \mathcal{F} \mathcal{M}\left(M_{n}(\mathbb{C})\right)\right)>0,
$$

since $\mathcal{F} \mathcal{M}\left(M_{n}(\mathbb{C})\right)$ is closed. Therefore, the asymptotic quantum Birkhoff conjecture does not hold for $n \geq 3$.

Proof: We show that given $m, n \geq 1$, then for any τ_{n}-Markov map T on $M_{n}(\mathbb{C})$ and any τ_{m}-Markov map S on $M_{m}(\mathbb{C})$,

$$
d_{\mathrm{cb}}\left(T \otimes S, \operatorname{conv}\left(\operatorname{Aut}\left(M_{n} \otimes M_{m}\right)\right) \geq d_{\mathrm{cb}}\left(T, \mathcal{F} \mathcal{M}\left(M_{n}(\mathbb{C})\right)\right)\right.
$$

Let $i: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C}) \otimes M_{m}(\mathbb{C})$ be given by

$$
i(x):=x \otimes 1, \quad x \in M_{n}(\mathbb{C})
$$

It is easily checked that $i^{*}(T \otimes S) i=T$, where i^{*} is the adjoint of i. Since $\|i\|_{\mathrm{cb}}=\left\|i^{*}\right\|_{\mathrm{cb}}=1$, we get

$$
\begin{align*}
& d_{\mathrm{cb}}\left(T \otimes S, \operatorname{conv}\left(\operatorname{Aut}\left(M_{n} \otimes M_{m}\right)\right) \geq\right. \tag{8}\\
& d_{\mathrm{cb}}\left(T, i^{*} \operatorname{conv}\left(\operatorname{Aut}\left(M_{n} \otimes M_{m}\right)\right) i\right) .
\end{align*}
$$

Since for every $u \in \mathcal{U}\left(M_{n} \otimes M_{m}\right)$, the map $i^{*} \circ \operatorname{ad}(u) \circ i$ is factorizable, and $\mathcal{F M}\left(M_{n}(\mathbb{C})\right)$ is a convex set, we deduce that

$$
i^{*} \operatorname{conv}\left(\operatorname{Aut}\left(M_{n} \otimes M_{m}\right) i \subset \mathcal{F} \mathcal{M}\left(M_{m}(\mathbb{C})\right),\right.
$$

which together with (8) completes the proof.

