A Hörmander type multiplier theorem for arbitrary discrete groups

Javier Parcet

Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM Joint work with Marius Junge and Tao Mei

Noncommutative L_p spaces, Operator spaces and Applications Banff International Research Station. June 28, 2010

The problem

Consider a Fourier multiplier on (\mathbb{T}^n,μ)

$$T_m\left(\sum_{k\in\mathbb{Z}^n}\widehat{f}(k)\,e^{2\pi i\,\langle k,\cdot\rangle}\right) = \sum_{k\in\mathbb{Z}^n}m_k\,\widehat{f}(k)\,e^{2\pi i\,\langle k,\cdot\rangle}.$$

A lifting multiplier for \boldsymbol{m} is an smooth function

 $\tilde{m}: \mathbb{R}^n \to \mathbb{C}$ satisfying $\tilde{m}_{|_{\mathbb{Z}^n}} = m$.

It is well-known that L_p -boundedness is preserved, so that we have

 $\left|\partial_{\xi}^{\beta}\tilde{m}(\xi)\right| \leq c_n \left|\xi\right|^{-\left|\beta\right|} \text{ for all } \left|\beta\right| \leq \left[\frac{n}{2}\right] + 1 \quad \Rightarrow \quad T_m : L_p(\mathbb{T}^n,\mu) \to L_p(\mathbb{T}^n,\mu).$

In the case of arbitrary discrete groups

- There is no canonical differential structure to work with.
- No sufficient differentiability conditions are known for L_p -boundedness.

Our main goals in this talk is to present

- A Hörmander multiplier theorem for arbitrary discrete groups.
- A noncommutative Calderón-Zygmund theory for von Neumann algebras.

Compact duals

Let \boldsymbol{G} be a discrete group and

 $f\sim \sum_{g\in \mathbf{G}}\widehat{f}(g)\lambda(g)\in L_p(\widehat{\mathbb{G}},\tau) \quad \text{such that} \quad \widehat{f}(g)\,=\,\tau(f\lambda(g^{-1}))$

a Fourier series on its compact dual, where:

• $\lambda : G \to \mathcal{B}(\ell_2(G))$ is the left regular representation $\lambda(g)\delta_h = \delta_{gh}$ for $\delta_g(h) = \delta_{g=h}$, and $\widehat{\mathbb{G}} = \mathcal{L}(G)$ is the weak operator closure of $\operatorname{span}\lambda(G)$ in $\mathcal{B}(\ell_2(G))$. • We equip the group von Neumann algebra $\mathcal{L}(G)$ with its natural trace $\tau(f) = \langle f\delta_e, \delta_e \rangle_{\ell_2(G)} = \widehat{f}(e)$ where $e = \operatorname{Identity}$ of G. $L_p(\widehat{\mathbb{G}}, \tau)$ is the noncommutative L_p space associated to $(\mathcal{L}(G), \tau)$, with norm $\|f\|_p = (\tau |f|^p)^{\frac{1}{p}}$ and $\|f\|_{\infty} = \|f\|_{\mathcal{B}(\ell_2(G))}$.

Example. If $G = \mathbb{Z}$, we have an isometry

$$\ell_2(\mathbf{G}) \ni \delta_m \mapsto \exp(2\pi i m \cdot) \in L_2(\mathbb{T}, \mu) \implies \lambda(m) \sim \exp(2\pi i m \cdot).$$

We have $\tau = \int_{\mathbb{T}} \cdot d\mu$ for the normalized Haar measure μ and $L_p(\widehat{\mathbb{G}}, \tau) = L_p(\mathbb{T}, \mu)$.

Sketch of the talk

Given a discrete group $\mathrm{G},$ the key points are:

• Cocycles. If $\psi: \mathbf{G} \to \mathbb{R}_+$ is such that

 $e^{-t\psi}$ is positive definite for all t > 0,

we may find an inclusion $b_{\psi} : G \to \mathcal{H}_{\psi}$ into a Hilbert space \mathcal{H}_{ψ} , which is isometric in the sense that

$$\operatorname{dist}(g,h) \equiv \sqrt{\psi(g^{-1}h)} = \left\| b_{\psi}(g) - b_{\psi}(h) \right\|_{\mathcal{H}_{\psi}}$$

defines a **pseudo-metric** on G, and \mathcal{H}_{ψ} plays the role of an **'ambient space'** for G.

• Hörmander-Mihlin condition. Given a Fourier multiplier

$$T_m: \sum_g \widehat{f}(g)\lambda(g) \mapsto \sum_g m_g \widehat{f}(g)\lambda(g),$$

a lifting multiplier is given by $\tilde{m} : \mathcal{H}_{\psi} \to \mathbb{C}$ with $m = \tilde{m} \circ b_{\psi}$. If $\dim \mathcal{H}_{\psi} = n$

$$\left|\partial_{\xi}^{\beta}\widetilde{m}(\xi)\right| \leq c_n \left|\xi\right|^{-\beta}$$
 for all $\left|\beta\right| \leq \left[\frac{n}{2}\right] + 1 \xrightarrow{?} T_m : L_p(\widehat{\mathbb{G}}, \tau) \to L_p(\widehat{\mathbb{G}}, \tau)$

• Calderón-Zygmund theory. This naturally leads to a form of

$$\operatorname{ess\,sup}_{x\in\mathbb{R}^n} \int_{|s|>2|x|} \left| k_{\tilde{m}}(s-x) - k_{\tilde{m}}(s) \right| ds < \infty \quad \Rightarrow \quad T_{\tilde{m}} : L_{\infty} \to \operatorname{BMO}$$

the Hörmander condition for the kernel, valid for arbitrary von Neumann algebras.

Length functions

We will be working with functions $\psi : G \to \mathbb{R}_+$ such that:

i) $\psi(e) = 0$,

- ii) $\psi(g) = \psi(g^{-1})$ for all $g \in \mathbf{G}$,
- iii) ψ is a conditionally negative function

$$\sum_{g\in\Lambda\subset\mathbf{G}}\gamma_g=0\quad\text{and}\quad |\Lambda|<\infty\quad\Rightarrow\quad \sum_{g,h\in\Lambda}\overline{\gamma}_g\gamma_h\psi(g^{-1}h)\leq 0.$$

We will call such a ψ a length function. By Schoenberg theorem

 ψ length function $\Leftrightarrow e^{-t\psi}$ positive definite for all t > 0.

Examples. Two standard cases:

• If $G = \mathbb{Z}^n$, we may take

$$\psi_1 = | |^2$$
 and $\psi_2 = | |$.

The heat and Poisson kernels are positive with Fourier transforms $e^{-t\psi_j}$, j = 1, 2.

• If $G = \mathbb{F}_n$ is the free group with n generators, we may use $\psi(g) = |g| = \text{ standard length function},$

because the associated Poisson semigroup is formed of completely positive maps.

Construction of the cocycle

Given a length function ψ

$$K_{\psi}(g,h) = \frac{\psi(g) + \psi(h) - \psi(g^{-1}h)}{2} \rightsquigarrow \left\langle \sum_{g \in \mathcal{G}} \gamma_g \delta_g, \sum_{h \in \mathcal{G}} \gamma'_h \delta_h \right\rangle_{\psi} = \sum_{g,h \in \mathcal{G}} \gamma_g K_{\psi}(g,h) \gamma'_h.$$

This is an \mathbb{R} -product on the group algebra $\mathbb{R}[G]$ of finitely supported real functions on G. If we set N_{ψ} to be the null space of $\langle \cdot, \cdot \rangle_{\psi}$, we may define the Hilbert space \mathcal{H}_{ψ} as the completion of $(\mathbb{R}[G]/N_{\psi}, \langle \cdot, \cdot \rangle_{\psi})$ and define the natural inclusion

 $b_{\psi}: g \in \mathcal{G} \mapsto \delta_g + N_{\psi} \in \mathcal{H}_{\psi}$

which satisfies the isometric identity $\|b_{\psi}(g) - b_{\psi}(h)\|_{\mathcal{H}_{\psi}} = \sqrt{\psi(g^{-1}h)} = \operatorname{dist}(g,h).$ There exists a natural action $\alpha_{\psi} : \mathbf{G} \to \operatorname{Aut}(\mathcal{H}_{\psi})$

$$\alpha_{\psi,g}(b_{\psi}(h)) = b_{\psi}(gh) - b_{\psi}(g)$$

which is isometric in the sense that we have $\langle \alpha_{\psi,g}(\xi_1), \alpha_{\psi,g}(\xi_2) \rangle_{\psi} = \langle \xi_1, \xi_2 \rangle_{\psi}$. This allows us to construct a **semidirect product embedding** $g \mapsto b_{\psi}(g) \rtimes g$ which extends to the group von Neumann algebras as follows

 $\pi_{\psi} : \lambda(g) \in \mathcal{L}(\mathbf{G}) \mapsto \exp b_{\psi}(g) \rtimes \lambda(g) \in \mathcal{L}(\mathcal{H}_{\psi}) \rtimes_{\alpha_{\psi}} \mathbf{G}.$

The key is to show $T_{\tilde{m}}: L_{\infty}(\mathcal{H}_{\psi}) \to BMO \Rightarrow T_{\tilde{m}} \rtimes id_{G}$ is still bounded (NCCZ theory).

Hörmander-Mihlin multipliers for discrete groups

Theorem [JMP]. Let G be a discrete group and

$$T_m: \sum_g \widehat{f}(g)\lambda(g) \mapsto \sum_g m_g \widehat{f}(g)\lambda(g)$$

a Fourier multiplier on its compact dual. Assume that G is equipped with a length function ψ , with associated cocycle $b_{\psi} : G \to \mathcal{H}_{\psi}$ such that $\dim \mathcal{H}_{\psi} = n$. Let $\tilde{m} : \mathbb{R}^n \to \mathbb{C}$ be a lifting multiplier for m, so that $m = \tilde{m} \circ b_{\psi}$. Then

 $T_m: L_p(\widehat{\mathbb{G}}, \tau) \to L_p(\widehat{\mathbb{G}}, \tau)$ is cb-bounded for 1

provided the condition below holds for some $\varepsilon > 0$

 $\left|\partial_{\xi}^{\beta}\tilde{m}(\xi)\right| \leq c_n \left|\xi\right|^{-\left|\beta\right|-\varepsilon}$ for all multi-indices β s.t. $\left|\beta\right| \leq n+2$.

The classical hypotheses with

$$|\beta| \leq \left[\frac{n}{2}\right] + 1 \text{ and } \varepsilon = 0$$

suffice in the following particular cases:

- If $b_{\psi}(G)$ is a lattice in \mathcal{H}_{ψ} .
- Radial Fourier multipliers $m_g = h(\psi(g))$.

We may also prove $L_{\infty} \to BMO$ type inequalities and some free-dimensional estimates.

Some comments

- If $G = \mathbb{Z}^n$ and $\psi_1(k) = |k|^2$, we easily get $\mathcal{H}_{\psi_1} \simeq \mathbb{R}^n$ and $b_{\psi_1}(k) = k \Rightarrow$ Classical Hörmander multiplier theorem. However, $\psi_2(k) = |k|$ gives $\dim \mathcal{H}_{\psi_2} = \infty$! Highly non canonical choice of cocycle.
- The are two problems to solve

 \circ Interpolation problem. Given $\psi : \mathbf{G} \to \mathbb{R}_+$, estimate

 $\inf \Big\{ \sup_{\xi \in \mathbb{R}^n} \sup_{|\beta| \le d_n} |\xi|^{-|\beta|} \Big| \partial_\beta \tilde{m}(\xi) \Big| \quad \text{s.t.} \quad \tilde{m} \circ b_\psi(g) = m_g \Big\}.$

Related to Fefferman's recent work on 'smooth interpolation of data'. • Dimensional problem. Given G, find $\inf_{\psi} \dim \mathcal{H}_{\psi}$ for $b_{\psi} : G \to \mathcal{H}_{\psi}$ injective.

Remark. We have $H-\dim(\mathbb{Z}^n) = 1!!$ Both problems are 'incompatible'.

• The negative generator of the semigroup

 $\lambda(g) \mapsto \exp(-t\psi(g))\lambda(g)$

is the map $A(\lambda(g)) = \psi(g)\lambda(g)$. In particular, we find

Radial Fourier multipliers \subset **McIntosh's** H_{∞} -calculus.

However, our Hörmander-Mihlin type condition above is considerably weaker.

• If $\dim \mathcal{H}_{\psi} = n \quad \rightarrow \quad \mathcal{H}_{\psi} \simeq \mathbb{R}^n_{\text{disc}} \text{ and } \mathcal{L}(\mathcal{H}_{\psi}) \simeq L_{\infty}(\widehat{\mathbb{R}}^n_{\text{disc}}, \mu) \quad \rightarrow \quad \text{de Leeuw.}$

Riesz transforms

Given a discrete group $\mathrm{G},$ we have seen

$$\begin{array}{ccc} \psi: \mathcal{G} \to \mathbb{R}_+ \\ \text{length function} \end{array} \Rightarrow \begin{array}{ccc} (\mathcal{H}_{\psi}, \langle \cdot, \cdot \rangle_{\psi}) \\ \text{Hilbert space} \end{array} \Rightarrow \begin{array}{ccc} b_{\psi}: \mathcal{G} \to \mathcal{H}_{\psi} \\ \text{cocyle map.} \end{array}$$

Thus, we consider the η -th Riesz ψ -transform for $\eta \in \mathcal{H}_{\psi}$ as

$$R_{\eta}\Big(\sum_{g\in \mathcal{G}}\widehat{f}(g)\lambda(g)\Big) = -i\sum_{g\in \mathcal{G}}\frac{\langle b_{\psi}(g),\eta\rangle_{\psi}}{\sqrt{\psi(g)}}\widehat{f}(g)\lambda(g).$$

The lifting multiplier $\tilde{m}_{\eta}(\xi) = -i \frac{\langle \xi, \eta \rangle_{\psi}}{\sqrt{\langle \xi, \xi \rangle_{\psi}}}$ only satisfies the classical condition

 $\left|\partial_{\xi}^{\beta} \tilde{m}_{\eta}(\xi)\right| \leq c_n |\xi|^{-|\beta|}$ for any multi-index $\beta \Rightarrow \varepsilon = 0$.

Theorem [JMP]. If dim $\mathcal{H}_{\psi} < \infty$, any operator in

 $\mathcal{R} = \operatorname{span} \left\{ \prod_{\eta \in \Gamma} R_{\eta} \mid \Gamma \text{ finite set in } \mathcal{H}_{\psi} \right\}$ defines a cb-map $\mathcal{L}(G) \to \operatorname{BMO}_{\mathcal{S}_{\psi}}$ and $L_p(\widehat{\mathbb{G}}, \tau) \to L_p(\widehat{\mathbb{G}}, \tau)$ for all 1 .

Noncommutative tori

Given
$$n \ge 1$$
 and $\Theta = (\theta_{jk})_{n \times n}$ antisymmetric
 $\mathcal{A}_{\Theta} = \left\langle u_1, u_2, \dots, u_n \mid \text{unitaries with } u_j u_k = e^{2\pi i \theta_{jk}} u_k u_j \right\rangle$
 $= \left\{ f \sim \sum_{k \in \mathbb{Z}^n} \widehat{f}(k) w_k \mid w_k = u_1^{k_1} u_2^{k_2} \cdots u_n^{k_n} \text{ with } k = (k_1, k_2, \dots, k_n) \right\}.$

We also need the trace $\tau(f) = \widehat{f}(0)$ and the heat semigroup $S_{\Theta,t}(f) = \sum_k \widehat{f}(k)e^{-t|k|^2}w_k$.

Theorem [JMP]. Let

$$T_m: \sum_k \widehat{f}(k) w_k \mapsto \sum_k m_k \widehat{f}(k) w_k.$$

If a lifting multiplier $\tilde{m}:\mathbb{R}^n\to\mathbb{C}$ with $\tilde{m}_{\mid_{\mathbb{Z}^n}}=m$ satisfies

$$\left|\partial_{\xi}^{\beta}\tilde{m}(\xi)\right| \leq c_{n}|\xi|^{-\beta}$$
 for all $|\beta| \leq \left[\frac{n}{2}\right] + 1$,

then we find that $T_m : L_{\infty}(\mathcal{A}_{\Theta}, \tau) \to \text{BMO}_{\mathcal{S}_{\Theta}}$ and $L_p(\mathcal{A}_{\Theta}) \to L_p(\mathcal{A}_{\Theta})$ for all 1 .

Proof 1. Noncommutative form of Calderón's transference from \mathbb{T}^n . **Proof 2.** We have $\mathcal{L}(H_{\Theta}) = \int_{\mathbb{R}}^{\oplus} \mathcal{A}_{x\Theta} dx$ and apply our multiplier theorem to H_{Θ} .

Noncommutative Calderón-Zygmund theory

We are interested in a noncommutative form of

for any Calderón-Zygmund T with kernel k and with $\delta_{\mathbb{R}^n}(f) = f \otimes 1_{\mathbb{R}^n} - 1_{\mathbb{R}^n} \otimes f$.

Major difficulty: Construct projections playing the role of the Euclidean balls $B_s(0)$.

The key ingredients are

- Noncommutative BMO's over semigroups.
- An associated 'metric' on the von Neumann algebra.

Semigroup type BMO's

Duong and Yan recently extended BMO theory to certain semigroups on homogeneous spaces assuming certain regularity. This theory, however, *still imposes the existence of a metric in the underlying space*. We may not assume the existence of a metric.

Given a noncommutative measure space (\mathcal{M},τ) and

$$\mathcal{S} = (S_t)_{t \ge 0}$$
 with $S_t : f \in L_p(\mathcal{M}, \tau) \to d_t * f \in L_p(\mathcal{M}, \tau)$,

a noncommutative diffusion semigroup of convolution type, we define

$$\|f\|_{\mathrm{BMO}_{\mathcal{S}}^{c}} = \sup_{t \ge 0} \left\| \left(S_{t} |f|^{2} - |S_{t}f|^{2} \right)^{\frac{1}{2}} \right\|_{\infty}$$

for the column semigroup type BMO. The row analog and the general form are

$$\|f\|_{\mathrm{BMO}_{\mathcal{S}}^{r}} = \|f^{*}\|_{\mathrm{BMO}_{\mathcal{S}}^{c}}$$
 and $\|f\|_{\mathrm{BMO}_{\mathcal{S}}} = \max\left\{\|f\|_{\mathrm{BMO}_{\mathcal{S}}^{r}}, \|f\|_{\mathrm{BMO}_{\mathcal{S}}^{c}}\right\}.$

Theorem [Junge/Mei]. If S admits a 'nice enough' Markov dilation $[BMO_{S}, L_{p}(\mathcal{M}, \tau)]_{p/q} \simeq L_{q}(\mathcal{M}, \tau).$

Remark. The regularity assumed in the result above holds in our main examples.

Noncommutative 'metrics'

A weighted spectral decomposition for

 $\mathcal{S} = (S_t)_{t \geq 0}$ with $S_t f = d_t * f$

is a family of projections $(q_{k,t})$ in \mathcal{M} —indexed by $(k,t) \in \mathbb{N} \times \mathbb{R}_+$ — which are increasing in k for t fixed, together with a family of positive numbers $\beta_{k,t} \in \mathbb{R}_+$ such that the following conditions hold for absolute constants c_w, c_s, c_d

$$\begin{array}{l} \textbf{i)} \sum_{k \geq 1} \beta_{k,t} \tau(q_{k,t}) \leq c_s, \\ \textbf{ii)} \ d_t \leq c_d \sum_{k \geq 1} \beta_{k,t} (q_{k,t} - q_{k-1,t}), \\ \textbf{iii)} \ \sum_{k \geq 1} \beta_{k,t} w_{k,t} \tau(q_{k,t} - q_{k-1,t}) \leq c_w \quad \text{for} \quad w_{k,t} = \big(\sum_{j \leq k} \sqrt{\frac{\tau(q_{j+1,t})}{\tau(q_{j,t})}} \big)^2. \end{array}$$

This notion is somehow related to

- Tolsa's notion of RBMO space for nondoubling measures.
- Blunck/Kunstmann's analysis of non-integral Calderón-Zygmund operators.

We will however require a doubling property of the trace τ

 $\tau(q_{\alpha(k),t}) \leq c_{\alpha}\tau(q_{k,t})$ for some strictly increasing function $\alpha: \mathbb{N} \to \mathbb{N}$.

Boundedness of noncommutative CZO's

Taking $Q_{k,t}(f) = \frac{1}{\tau(q_{k,t})} q_{k,t} * f$ yields a metric type BMO, called BMO_Q.

Theorem [JMP]. Let (\mathcal{M}, τ) be a noncommutative measure space and S a semigroup acting on it equipped with an α -doubling weighted decomposition with associated metric $\mathcal{Q} = (Q_{k,t})$. Let $T : \mathcal{A} \to \mathcal{M}$ defined on a weakly dense *-subalgebra of \mathcal{M} . If we consider the derivation $\delta_{\mathcal{M}}(f) = f \otimes \mathbf{1}_{\mathcal{M}} - \mathbf{1}_{\mathcal{M}} \otimes f$, the conditions

a)
$$T: L_2(\mathcal{M}, \tau) \rightarrow L_2(\mathcal{M}, \tau)$$
 is bounded by c_{22} ,

b1) $\|\mathcal{R}_{q_{k,t}\otimes q_{k,t}}\delta_{\mathcal{M}}(T\otimes id_{\mathcal{M}})\mathcal{R}_{q_{\alpha(k),t}^{\perp}}:\mathcal{M}\bar{\otimes}\mathcal{M}\to\mathcal{M}\bar{\otimes}\mathcal{M}\bar{\otimes}\mathcal{M}\| \leq c_{h} \text{ for all } k,t,$ **b2)** $\|\mathcal{L}_{q_{k,t}\otimes q_{k,t}}\delta_{\mathcal{M}}(T\otimes id_{\mathcal{M}})\mathcal{L}_{q_{\alpha(k),t}^{\perp}}:\mathcal{M}\bar{\otimes}\mathcal{M}\to\mathcal{M}\bar{\otimes}\mathcal{M}\bar{\otimes}\mathcal{M}\| \leq c_{h} \text{ for all } k,t,$ imply that $T:\mathcal{A}\to BMO_{\mathcal{Q}}.$ More concretely, we obtain $\|Tf\|_{BMO_{\mathcal{Q}}}\leq (2c_{22}\sqrt{c_{\alpha}}+c_{h})\|f\|_{\infty}.$ $\|Tf\|_{BMO_{\mathcal{S}}}\leq 2\sqrt{2}\sqrt{c_{d}(c_{s}+c_{w})}(2c_{22}\sqrt{c_{\alpha}}+c_{h})\|f\|_{\infty}.$

Corollary [JMP]. Additionally, if S has a nice Markov dilation, we obtain L_p -boundedness.

Remark. The heat semigroup reconstructs the classical \mathbb{R}^n -theory from Theorem above.

Applications and examples

- New $L_{\infty} \to BMO$ Schur multipliers.
- Analysis of some **concrete groups**: $\mathbb{Z}_n, \mathcal{S}_n, \mathbb{F}_n$...
- Burnside groups: $\operatorname{H-dim}(B(n,m)) = \infty$ for $n \ge 2$ and $m \ge 665$ odd.
- Calderón's transference method for quantum groups.
- An adapted Littlewood-Paley theory.

Thanks for listening!!