A Hörmander type multiplier theorem for arbitrary discrete groups

Javier Parcet
Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM
Joint work with Marius Junge and Tao Mei

Noncommutative L_{p} spaces, Operator spaces and Applications
Banff International Research Station. June 28, 2010

The problem

Consider a Fourier multiplier on $\left(\mathbb{T}^{n}, \mu\right)$

$$
T_{m}\left(\sum_{k \in \mathbb{Z}^{n}} \widehat{f}(k) e^{2 \pi i\langle k, \cdot\rangle}\right)=\sum_{k \in \mathbb{Z}^{n}} m_{k} \widehat{f}(k) e^{2 \pi i\langle k, \cdot\rangle} .
$$

A lifting multiplier for m is an smooth funcion

$$
\tilde{m}: \mathbb{R}^{n} \rightarrow \mathbb{C} \quad \text { satisfying } \quad \tilde{m}_{\mathbb{Z}^{n}}=m
$$

It is well-known that L_{p}-boundedness is preserved, so that we have

$$
\left|\partial_{\xi}^{\beta} \tilde{m}(\xi)\right| \leq c_{n}|\xi|^{-|\beta|} \quad \text { for all } \quad|\beta| \leq\left[\frac{n}{2}\right]+1 \quad \Rightarrow \quad T_{m}: L_{p}\left(\mathbb{T}^{n}, \mu\right) \rightarrow L_{p}\left(\mathbb{T}^{n}, \mu\right)
$$

In the case of arbitrary discrete groups

- There is no canonical differential structure to work with.
- No sufficient differentiability conditions are known for L_{p}-boundedness.

Our main goals in this talk is to present

- A Hörmander multiplier theorem for arbitrary discrete groups.
- A noncommutative Calderón-Zygmund theory for von Neumann algebras.

Compact duals

Let G be a discrete group and

$$
f \sim \sum_{g \in \mathrm{G}} \widehat{f}(g) \lambda(g) \in L_{p}(\widehat{\mathbb{G}}, \tau) \quad \text { such that } \quad \widehat{f}(g)=\tau\left(f \lambda\left(g^{-1}\right)\right)
$$

a Fourier series on its compact dual, where:

- $\lambda: \mathrm{G} \rightarrow \mathcal{B}\left(\ell_{2}(\mathrm{G})\right)$ is the left regular representation

$$
\lambda(g) \delta_{h}=\delta_{g h} \quad \text { for } \quad \delta_{g}(h)=\delta_{g=h},
$$

and $\widehat{\mathbb{G}}=\mathcal{L}(G)$ is the weak operator closure of $\operatorname{span} \lambda(G)$ in $\mathcal{B}\left(\ell_{2}(G)\right)$.

- We equip the group von Neumann algebra $\mathcal{L}(G)$ with its natural trace

$$
\tau(f)=\left\langle f \delta_{e}, \delta_{e}\right\rangle_{\ell_{2}(\mathrm{G})}=\widehat{f}(e) \quad \text { where } \quad e=\text { Identity of } \mathrm{G} .
$$

$L_{p}(\widehat{\mathbb{G}}, \tau)$ is the noncommutative L_{p} space associated to $(\mathcal{L}(\mathrm{G}), \tau)$, with norm

$$
\|f\|_{p}=\left(\tau|f|^{p}\right)^{\frac{1}{p}} \quad \text { and } \quad\|f\|_{\infty}=\|f\|_{\mathcal{B}\left(\ell_{2}(\mathrm{G})\right)}
$$

Example. If $G=\mathbb{Z}$, we have an isometry

$$
\ell_{2}(\mathrm{G}) \ni \delta_{m} \mapsto \exp (2 \pi i m \cdot) \in L_{2}(\mathbb{T}, \mu) \Rightarrow \lambda(m) \sim \exp (2 \pi i m \cdot)
$$

We have $\tau=\int_{\mathbb{T}} \cdot d \mu$ for the normalized Haar measure μ and $L_{p}(\widehat{\mathbb{G}}, \tau)=L_{p}(\mathbb{T}, \mu)$.

Sketch of the talk

Given a discrete group G, the key points are:

- Cocycles. If $\psi: \mathrm{G} \rightarrow \mathbb{R}_{+}$is such that

$$
e^{-t \psi} \text { is positive definite for all } t>0
$$

we may find an inclusion $b_{\psi}: \mathrm{G} \rightarrow \mathcal{H}_{\psi}$ into a Hilbert space \mathcal{H}_{ψ}, which is isometric in the sense that

$$
\operatorname{dist}(g, h) \equiv \sqrt{\psi\left(g^{-1} h\right)}=\left\|b_{\psi}(g)-b_{\psi}(h)\right\|_{\mathcal{H}_{\psi}}
$$

defines a pseudo-metric on G , and \mathcal{H}_{ψ} plays the role of an 'ambient space' for G .

- Hörmander-Mihlin condition. Given a Fourier multiplier

$$
T_{m}: \sum_{g} \widehat{f}(g) \lambda(g) \mapsto \sum_{g} m_{g} \widehat{f}(g) \lambda(g)
$$

a lifting multiplier is given by $\tilde{m}: \mathcal{H}_{\psi} \rightarrow \mathbb{C}$ with $m=\tilde{m} \circ b_{\psi}$. If $\operatorname{dim} \mathcal{H}_{\psi}=n$

$$
\left|\partial_{\xi}^{\beta} \tilde{m}(\xi)\right| \leq c_{n}|\xi|^{-\beta} \text { for all }|\beta| \leq\left[\frac{n}{2}\right]+1 \stackrel{?}{\Rightarrow} T_{m}: L_{p}(\widehat{\mathbb{G}}, \tau) \rightarrow L_{p}(\widehat{\mathbb{G}}, \tau)
$$

- Calderón-Zygmund theory. This naturally leads to a form of

$$
\underset{x \in \mathbb{R}^{n}}{\mathrm{ess}} \sup _{|s|>2|x|}\left|k_{\tilde{m}}(s-x)-k_{\tilde{m}}(s)\right| d s<\infty \Rightarrow T_{\tilde{m}}: L_{\infty} \rightarrow \mathrm{BMO}
$$

the Hörmander condition for the kernel, valid for arbitrary von Neumann algebras.

Length functions

We will be working with functions $\psi: \mathrm{G} \rightarrow \mathbb{R}_{+}$such that:
i) $\psi(e)=0$,
ii) $\psi(g)=\psi\left(g^{-1}\right)$ for all $g \in \mathrm{G}$,
iii) ψ is a conditionally negative function

$$
\sum_{g \in \Lambda \subset G} \gamma_{g}=0 \quad \text { and } \quad|\Lambda|<\infty \Rightarrow \sum_{g, h \in \Lambda} \bar{\gamma}_{g} \gamma_{h} \psi\left(g^{-1} h\right) \leq 0
$$

We will call such a ψ a length function. By Schoenberg theorem

$$
\psi \text { length function } \Leftrightarrow \quad e^{-t \psi} \text { positive definite for all } t>0 \text {. }
$$

Examples. Two standard cases:

- If $\mathrm{G}=\mathbb{Z}^{n}$, we may take

$$
\psi_{1}=| |^{2} \quad \text { and } \quad \psi_{2}=| | .
$$

The heat and Poisson kernels are positive with Fourier transforms $e^{-t \psi_{j}}, j=1,2$.

- If $\mathrm{G}=\mathbb{F}_{n}$ is the free group with n generators, we may use

$$
\psi(g)=|g|=\text { standard length function }
$$

because the associated Poisson semigroup is formed of completely positive maps.

Construction of the cocycle

Given a length function ψ

$$
K_{\psi}(g, h)=\frac{\psi(g)+\psi(h)-\psi\left(g^{-1} h\right)}{2} \leadsto\left\langle\sum_{g \in \mathrm{G}} \gamma_{g} \delta_{g}, \sum_{h \in \mathrm{G}} \gamma_{h}^{\prime} \delta_{h}\right\rangle_{\psi}=\sum_{g, h \in \mathrm{G}} \gamma_{g} K_{\psi}(g, h) \gamma_{h}^{\prime} .
$$

This is an \mathbb{R}-product on the group algebra $\mathbb{R}[\mathrm{G}]$ of finitely supported real functions on G . If we set N_{ψ} to be the null space of $\langle\cdot, \cdot\rangle_{\psi}$, we may define the Hilbert space \mathcal{H}_{ψ} as the completion of $\left(\mathbb{R}[\mathrm{G}] / N_{\psi},\langle\cdot, \cdot\rangle_{\psi}\right)$ and define the natural inclusion

$$
b_{\psi}: g \in \mathrm{G} \mapsto \delta_{g}+N_{\psi} \in \mathcal{H}_{\psi}
$$

which satisfies the isometric identity $\left\|b_{\psi}(g)-b_{\psi}(h)\right\|_{\mathcal{H}_{\psi}}=\sqrt{\psi\left(g^{-1} h\right)}=\operatorname{dist}(g, h)$.
There exists a natural action $\alpha_{\psi}: \mathrm{G} \rightarrow \operatorname{Aut}\left(\mathcal{H}_{\psi}\right)$

$$
\alpha_{\psi, g}\left(b_{\psi}(h)\right)=b_{\psi}(g h)-b_{\psi}(g)
$$

which is isometric in the sense that we have $\left\langle\alpha_{\psi, g}\left(\xi_{1}\right), \alpha_{\psi, g}\left(\xi_{2}\right)\right\rangle_{\psi}=\left\langle\xi_{1}, \xi_{2}\right\rangle_{\psi}$. This allows us to construct a semidirect product embedding $g \mapsto b_{\psi}(g) \rtimes g$ which extends to the group von Neumann algebras as follows

$$
\pi_{\psi}: \lambda(g) \in \mathcal{L}(\mathrm{G}) \mapsto \exp b_{\psi}(g) \rtimes \lambda(g) \in \mathcal{L}\left(\mathcal{H}_{\psi}\right) \rtimes_{\alpha_{\psi}} \mathrm{G}
$$

The key is to show $T_{\tilde{m}}: L_{\infty}\left(\mathcal{H}_{\psi}\right) \rightarrow \mathrm{BMO} \Rightarrow T_{\tilde{m}} \rtimes i d_{\mathrm{G}}$ is still bounded (NCCZ theory).

Hörmander-Mihlin multipliers for discrete groups

Theorem [JMP]. Let G be a discrete group and

$$
T_{m}: \sum_{g} \widehat{f}(g) \lambda(g) \mapsto \sum_{g} m_{g} \widehat{f}(g) \lambda(g)
$$

a Fourier multiplier on its compact dual. Assume that G is equipped with a length function ψ, with associated cocycle $b_{\psi}: \mathrm{G} \rightarrow \mathcal{H}_{\psi}$ such that $\operatorname{dim} \mathcal{H}_{\psi}=n$. Let $\tilde{m}: \mathbb{R}^{n} \rightarrow \mathbb{C}$ be a lifting multiplier for m, so that $m=\tilde{m} \circ b_{\psi}$. Then

$$
T_{m}: L_{p}(\widehat{\mathbb{G}}, \tau) \rightarrow L_{p}(\widehat{\mathbb{G}}, \tau) \quad \text { is cb-bounded for } \quad 1<p<\infty
$$

provided the condition below holds for some $\varepsilon>0$

$$
\left|\partial_{\xi}^{\beta} \tilde{m}(\xi)\right| \leq c_{n}|\xi|^{-|\beta|-\varepsilon} \quad \text { for all multi-indices } \beta \text { s.t. } \quad|\beta| \leq n+2
$$

The classical hypotheses with

$$
|\beta| \leq\left[\frac{n}{2}\right]+1 \quad \text { and } \quad \varepsilon=0
$$

suffice in the following particular cases:

- If $b_{\psi}(\mathrm{G})$ is a lattice in \mathcal{H}_{ψ}.
- Radial Fourier multipliers $m_{g}=h(\psi(g))$.

We may also prove $L_{\infty} \rightarrow$ BMO type inequalities and some free-dimensional estimates.

Some comments

- If $\mathrm{G}=\mathbb{Z}^{n}$ and $\psi_{1}(k)=|k|^{2}$, we easily get
$\mathcal{H}_{\psi_{1}} \simeq \mathbb{R}^{n} \quad$ and $\quad b_{\psi_{1}}(k)=k \quad \Rightarrow \quad$ Classical Hörmander multiplier theorem.
However, $\psi_{2}(k)=|k|$ gives $\operatorname{dim} \mathcal{H}_{\psi_{2}}=\infty$! Highly non canonical choice of cocycle.
- The are two problems to solve
- Interpolation problem. Given $\psi: \mathrm{G} \rightarrow \mathbb{R}_{+}$, estimate

$$
\inf \left\{\sup _{\xi \in \mathbb{R}^{n}} \sup _{|\beta| \leq d_{n}}|\xi|^{-|\beta|}\left|\partial_{\beta} \tilde{m}(\xi)\right| \text { s.t. } \tilde{m} \circ b_{\psi}(g)=m_{g}\right\} .
$$

Related to Fefferman's recent work on 'smooth interpolation of data'.

- Dimensional problem. Given G , find $\inf _{\psi} \operatorname{dim} \mathcal{H}_{\psi}$ for $b_{\psi}: \mathrm{G} \rightarrow \mathcal{H}_{\psi}$ injective.

Remark. We have H-dim $\left(\mathbb{Z}^{n}\right)=1$!! Both problems are 'incompatible'.

- The negative generator of the semigroup

$$
\lambda(g) \mapsto \exp (-t \psi(g)) \lambda(g)
$$

is the map $A(\lambda(g))=\psi(g) \lambda(g)$. In particular, we find
Radial Fourier multipliers \subset McIntosh's H_{∞}-calculus.
However, our Hörmander-Mihlin type condition above is considerably weaker.

- If $\operatorname{dim} \mathcal{H}_{\psi}=n \quad \rightarrow \quad \mathcal{H}_{\psi} \simeq \mathbb{R}_{\text {disc }}^{n}$ and $\mathcal{L}\left(\mathcal{H}_{\psi}\right) \simeq L_{\infty}\left(\widehat{\mathbb{R}}_{\text {disc }}^{n}, \mu\right) \quad \rightarrow \quad$ de Leeuw.

Riesz transforms

Given a discrete group G, we have seen

$$
\underset{\text { length function }}{\psi: \mathrm{G} \rightarrow \mathbb{R}_{+}} \Rightarrow \begin{gathered}
\left(\mathcal{H}_{\psi},\langle\cdot, \cdot\rangle_{\psi}\right) \\
\text { Hilbert space }
\end{gathered} \Rightarrow \begin{gathered}
b_{\psi}: \mathrm{G} \rightarrow \mathcal{H}_{\psi} \\
\text { cocyle map. }
\end{gathered}
$$

Thus, we consider the η-th Riesz ψ-transform for $\eta \in \mathcal{H}_{\psi}$ as

$$
R_{\eta}\left(\sum_{g \in \mathrm{G}} \widehat{f}(g) \lambda(g)\right)=-i \sum_{g \in \mathrm{G}} \frac{\left\langle b_{\psi}(g), \eta\right\rangle_{\psi}}{\sqrt{\psi(g)}} \widehat{f}(g) \lambda(g)
$$

The lifting multiplier $\tilde{m}_{\eta}(\xi)=-i \frac{\langle\xi, \eta\rangle_{\psi}}{\sqrt{\langle\xi, \xi\rangle_{\psi}}}$ only satisfies the classical condition

$$
\left|\partial_{\xi}^{\beta} \tilde{m}_{\eta}(\xi)\right| \leq c_{n}|\xi|^{-|\beta|} \text { for any multi-index } \beta \Rightarrow \varepsilon=0
$$

Theorem [JMP]. If $\operatorname{dim} \mathcal{H}_{\psi}<\infty$, any operator in

$$
\mathcal{R}=\operatorname{span}\left\{\prod_{\eta \in \Gamma} R_{\eta} \mid \Gamma \text { finite set in } \mathcal{H}_{\psi}\right\}
$$

defines a cb-map $\mathcal{L}(\mathrm{G}) \rightarrow \mathrm{BMO}_{\mathcal{S}_{\psi}}$ and $L_{p}(\widehat{\mathbb{G}}, \tau) \rightarrow L_{p}(\widehat{\mathbb{G}}, \tau)$ for all $1<p<\infty$.

Noncommutative tori

Given $n \geq 1$ and $\Theta=\left(\theta_{j k}\right)_{n \times n}$ antisymmetric

$$
\begin{aligned}
\mathcal{A}_{\Theta} & \left.=\left\langle u_{1}, u_{2}, \ldots, u_{n}\right| \text { unitaries with } u_{j} u_{k}=e^{2 \pi i \theta_{j k}} u_{k} u_{j}\right\rangle \\
& =\left\{f \sim \sum_{k \in \mathbb{Z}^{n}} \widehat{f}(k) w_{k} \mid w_{k}=u_{1}^{k_{1}} u_{2}^{k_{2}} \cdots u_{n}^{k_{n}} \text { with } k=\left(k_{1}, k_{2}, \ldots, k_{n}\right)\right\} .
\end{aligned}
$$

We also need the trace $\tau(f)=\widehat{f}(0)$ and the heat semigroup $S_{\Theta, t}(f)=\sum_{k} \widehat{f}(k) e^{-t|k|^{2}} w_{k}$.
Theorem [JMP]. Let

$$
T_{m}: \sum_{k} \widehat{f}(k) w_{k} \mapsto \sum_{k} m_{k} \widehat{f}(k) w_{k} .
$$

If a lifting multiplier $\tilde{m}: \mathbb{R}^{n} \rightarrow \mathbb{C}$ with $\tilde{m}_{\mathbb{Z}^{n}}=m$ satisfies

$$
\left|\partial_{\xi}^{\beta} \tilde{m}(\xi)\right| \leq c_{n}|\xi|^{-\beta} \quad \text { for all } \quad|\beta| \leq\left[\frac{n}{2}\right]+1,
$$

then we find that $T_{m}: L_{\infty}\left(\mathcal{A}_{\Theta}, \tau\right) \rightarrow \operatorname{BMO}_{\mathcal{S}_{\ominus}}$ and $L_{p}\left(\mathcal{A}_{\Theta}\right) \rightarrow L_{p}\left(\mathcal{A}_{\Theta}\right)$ for all $1<p<\infty$.
Proof 1. Noncommutative form of Calderón's transference from \mathbb{T}^{n}.
Proof 2. We have $\mathcal{L}\left(\mathrm{H}_{\Theta}\right)=\int_{\mathbb{R}}^{\oplus} \mathcal{A}_{x \Theta} d x$ and apply our multiplier theorem to H_{\ominus}.

Noncommutative Calderón-Zygmund theory

We are interested in a noncommutative form of

$$
\begin{aligned}
& \underset{x \in \mathbb{R}^{n}}{\operatorname{ess} \sup ^{1}} \int_{|s|>2|x|}|k(s-x)-k(s)| d s<\infty \\
& \text { I } \\
& \sup _{s>0}\left\|\left(\chi_{\mathrm{B}_{s}(0)} \otimes \chi_{\mathrm{B}_{s}(0)}\right) \delta_{\mathbb{R}^{n}} T\left(f \chi_{\mathbb{R}^{n} \backslash B_{5 s}(0)}\right)\right\|_{L_{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)} \leq c_{h}\|f\|_{\infty}
\end{aligned}
$$

for any Calderón-Zygmund T with kernel k and with $\delta_{\mathbb{R}^{n}}(f)=f \otimes 1_{\mathbb{R}^{n}}-1_{\mathbb{R}^{n}} \otimes f$.
Major difficulty: Construct projections playing the role of the Euclidean balls $\mathrm{B}_{s}(0)$.
The key ingredients are

- Noncommutative BMO's over semigroups.
- An associated 'metric' on the von Neumann algebra.

Semigroup type BMO's

Duong and Yan recently extended BMO theory to certain semigroups on homogeneous spaces assuming certain regularity. This theory, however, still imposes the existence of a metric in the underlying space. We may not assume the existence of a metric.

Given a noncommutative measure space (\mathcal{M}, τ) and

$$
\mathcal{S}=\left(S_{t}\right)_{t \geq 0} \quad \text { with } \quad S_{t}: f \in L_{p}(\mathcal{M}, \tau) \rightarrow d_{t} * f \in L_{p}(\mathcal{M}, \tau),
$$

a noncommutative diffusion semigroup of convolution type, we define

$$
\|f\|_{\mathrm{BMO}_{\mathcal{S}}^{c}}=\sup _{t \geq 0}\left\|\left(S_{t}|f|^{2}-\left|S_{t} f\right|^{2}\right)^{\frac{1}{2}}\right\|_{\infty}
$$

for the column semigroup type BMO. The row analog and the general form are

$$
\|f\|_{\mathrm{BMO}_{\mathcal{S}}^{r}}=\left\|f^{*}\right\|_{\mathrm{BMO}_{\mathcal{S}}^{c}} \quad \text { and } \quad\|f\|_{\mathrm{BMO}_{\mathcal{S}}}=\max \left\{\|f\|_{\mathrm{BMO}_{\mathcal{S}}^{r}},\|f\|_{\mathrm{BMO}_{\mathcal{S}}^{c}}\right\} .
$$

Theorem [Junge/Mei]. If \mathcal{S} admits a 'nice enough' Markov dilation

$$
\left[\mathrm{BMO}_{\mathcal{S}}, L_{p}(\mathcal{M}, \tau)\right]_{p / q} \simeq L_{q}(\mathcal{M}, \tau) .
$$

Remark. The regularity assumed in the result above holds in our main examples.

Noncommutative 'metrics'

A weighted spectral decomposition for

$$
\mathcal{S}=\left(S_{t}\right)_{t \geq 0} \quad \text { with } \quad S_{t} f=d_{t} * f
$$

is a family of projections $\left(q_{k, t}\right)$ in \mathcal{M}-indexed by $(k, t) \in \mathbb{N} \times \mathbb{R}_{+}$— which are increasing in k for t fixed, together with a family of positive numbers $\beta_{k, t} \in \mathbb{R}_{+}$such that the following conditions hold for absolute constants c_{w}, c_{s}, c_{d}
i) $\sum_{k \geq 1} \beta_{k, t} \tau\left(q_{k, t}\right) \leq c_{s}$,
ii) $d_{t} \leq c_{d} \sum_{k \geq 1} \beta_{k, t}\left(q_{k, t}-q_{k-1, t}\right)$,
iii) $\sum_{k \geq 1} \beta_{k, t} w_{k, t} \tau\left(q_{k, t}-q_{k-1, t}\right) \leq c_{w}$ for $w_{k, t}=\left(\sum_{j \leq k} \sqrt{\frac{\tau\left(q_{j+1, t)}\right)}{\tau\left(q_{j}, t\right)}}\right)^{2}$.

This notion is somehow related to

- Tolsa's notion of RBMO space for nondoubling measures.
- Blunck/Kunstmann's analysis of non-integral Calderón-Zygmund operators.

We will however require a doubling property of the trace τ

$$
\tau\left(q_{\alpha(k), t}\right) \leq c_{\alpha} \tau\left(q_{k, t}\right) \text { for some strictly increasing function } \alpha: \mathbb{N} \rightarrow \mathbb{N} \text {. }
$$

Boundedness of noncommutative CZO's

Taking $Q_{k, t}(f)=\frac{1}{\tau\left(q_{k, t}\right)} q_{k, t} * f$ yields a metric type BMO , called $\mathrm{BMO}_{\mathcal{Q}}$.
Theorem [JMP]. Let (\mathcal{M}, τ) be a noncommutative measure space and \mathcal{S} a semigroup acting on it equipped with an α-doubling weighted decomposition with associated metric $\mathcal{Q}=\left(Q_{k, t}\right)$. Let $T: \mathcal{A} \rightarrow \mathcal{M}$ defined on a weakly dense $*$-subalgebra of \mathcal{M}. If we consider the derivation $\delta_{\mathcal{M}}(f)=f \otimes \mathbf{1}_{\mathcal{M}}-\mathbf{1}_{\mathcal{M}} \otimes f$, the conditions
a) $T: L_{2}(\mathcal{M}, \tau) \rightarrow L_{2}(\mathcal{M}, \tau)$ is bounded by c_{22},
b1) $\left\|\mathcal{R}_{q_{k, t} \otimes q_{k, t}} \delta_{\mathcal{M}}\left(T \otimes i d_{\mathcal{M}}\right) \mathcal{R}_{q_{\alpha(k), t}^{\perp}}: \mathcal{M} \bar{\otimes} \mathcal{M} \rightarrow \mathcal{M} \bar{\otimes} \mathcal{M} \bar{\otimes} \mathcal{M}\right\| \leq c_{h}$ for all k, t,
b2) $\left\|\mathcal{L}_{q_{k, t} \otimes q_{k, t}} \delta_{\mathcal{M}}\left(T \otimes i d_{\mathcal{M}}\right) \mathcal{L}_{q_{\alpha(k), t}^{\perp}}: \mathcal{M} \bar{\otimes} \mathcal{M} \rightarrow \mathcal{M} \bar{\otimes} \mathcal{M} \bar{\otimes} \mathcal{M}\right\| \leq c_{h}$ for all k, t, imply that $T: \mathcal{A} \rightarrow \mathrm{BMO}_{\mathcal{Q}}$. More concretely, we obtain

$$
\begin{gathered}
\|T f\|_{\mathrm{BMO}_{\mathcal{Q}}} \leq\left(2 c_{22} \sqrt{c_{\alpha}}+c_{h}\right)\|f\|_{\infty} \\
\|T f\|_{\mathrm{BMO}_{\mathcal{S}}} \leq 2 \sqrt{2} \sqrt{c_{d}\left(c_{s}+c_{w}\right)}\left(2 c_{22} \sqrt{c_{\alpha}}+c_{h}\right)\|f\|_{\infty} .
\end{gathered}
$$

Corollary [JMP]. Additionally, if \mathcal{S} has a nice Markov dilation, we obtain L_{p}-boundedness.
Remark. The heat semigroup reconstructs the classical \mathbb{R}^{n}-theory from Theorem above.

Applications and examples

- New $L_{\infty} \rightarrow$ BMO Schur multipliers.
- Analysis of some concrete groups: $\mathbb{Z}_{n}, \mathcal{S}_{n}, \mathbb{F}_{n} \ldots$
- Burnside groups: $\mathrm{H}-\operatorname{dim}(B(n, m))=\infty$ for $n \geq 2$ and $m \geq 665$ odd.
- Calderón's transference method for quantum groups.
- An adapted Littlewood-Paley theory.

Thanks for listening!!

