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Talk summary

• overview of certain aspects of quantum information theory:
paradigms, concepts, notation

• additivity/multiplicativity problems

• an approach to those problems via tools of geometric functional
analysis, notably Dvoretzky’s theorem
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Quantum information theory
(from the geometric functional analysis angle)

• A complex Hilbert space H, usually H = Cd , and
the C ∗-algebra B(H), B(Cd) =Md

• The real space Msa
d of d × d Hermitian matrices

• The positive semi-definite cone PSD ⊂Msa
d

• The base of PSD consisting of density matrices:
D(H) := PSD ∩ {tr(·) = 1} ∼ the states of B(H) = the positive
face of the unit ball in the trace class (1-Schatten) norm

• Completely positive (CP) maps Φ : B(H1)→ B(H2), usually also
required to be trace preserving (TP)



More context and more notation

Unit vector ψ ∈ H = Cd (or |ψ〉) : “state” of a quantum system
with d levels

d = 2 → qubits

ρ = ψψ† = |ψ〉〈ψ| : the corresponding rank one projection, or

• a pure state of B(H), an element of B(H)∗ via duality
(A, ρ) := tr(Aρ†) or

• an element of the projective space CPd−1

Mixed states: ρ =
∑

α pα |ψα〉〈ψα| with
∑

α pα = 1

The set of mixed states coincides with D(H) = PSD ∩ {tr(·) = 1}



Measurements

|〈ψ|ej〉|2 = 〈ej |ψ〉〈ψ|ej〉 = 〈ej |ρ|ej〉 = tr
(
ρ|ej〉〈ej |

)
:

the probability of jth outcome under measurement

“in the basis (ej)” for ρ = |ψ〉〈ψ|,or general ρ

More general measurements schemes (POVM):

Given Pi ∈ PSD with
∑

i Pi = Id, the probability of

the ith outcome is tr
(
ρPi

)
In general, Pi ’s do not need to be projections



Bi- or multipartite systems, entanglement

m systems (or particles) : K = H1 ⊗H2 ⊗ . . .⊗Hm

Example: our apparatus and environment K = H⊗ E

Pure separable state (product vector): ψ = ξ ⊗ η

General separable states:

S = {
∑

α pα |ψα〉〈ψα| : ψα product vectors}

Entangled states: D \ S

conv
(
−D ∪D

)
= the unit ball of trace class

conv
(
− S ∪ S

)
= the unit ball of the projective tensor product of

trace class spaces on respective subsystems



Partial transpose, Peres-Horodecki criterion

Bipartite system: K = H1 ⊗H2

Partial transpose B(K)
T2→ B(K) : T2(ρ1 ⊗ ρ2) = ρ1 ⊗ ρt

2 etc.

Easy: ρ separable ⇒ T2(ρ) separable ⇒ T2(ρ) ∈ PSD

Criterion: T2(ρ) 6∈ PSD ⇒ ρ entangled

“⇔” only for 2× 2 and 2× 3 systems

(Størmer-Woronowicz)

PPT states: PPT := D ∩ T−1
2

(
D
)

Entangled PPT states: example of undistillable entanglement
(not defined)



Quantum vs. classical correlations, Tsirelson bound

X1,X2, . . ., Y1,Y2, . . . random variables; ‖Xj‖∞, ‖Yk‖∞ ≤ 1

Covariance matrix:
(
EXjYk

)
j ,k

Possible covariance matrices: C := conv
{(
δjηk

)
j ,k

: δj , ηk = ±1
}

C - a polytope; faces ∼ Bell inequalities

Quantum covariance matrices:

Q :=
{(

tr
(
ρ(Uj ⊗Vk)

))
j ,k

: ρ ∈ D(H1⊗H2), ‖Uj‖∞, ‖Vk‖∞ ≤ 1
}

Tsirelson: Q = conv
{(
〈uj |vk〉

)
j ,k

: uj , vk ∈ H, |uj |, |vk | ≤ 1
}

In particular, C  Q ⊂ KR
G C



Quantum operations, channels

Evolution of a (closed) system in discrete time :
ψ = |ψ〉 input, Uψ = U|ψ〉 output, U unitary (or an isometry)

In the language of states : |ψ〉〈ψ| → U|ψ〉〈ψ|U†

Quantum operation (channel) ρ→ Φ(ρ) = UρU†

(valid also for mixed states)

These are examples of “elementary” completely positive maps.
For open systems, quantum formalism allows also other CP maps
as quantum operations. However, by Stinespring-Kraus-Choi
theorem all such maps can be “reduced” to elementary ones

ρ→ Φ(ρ) =
∑

j BjρB
†
j



Quantum operations via partial trace

K = H⊗ E (e.g., our apparatus and environment)

Accessible part of a product state ξ ⊗ η is just ξ

Accessible part of ϕ is trE(|ϕ〉〈ϕ|), where trE is the partial trace
induced by trE(σ ⊗ τ) = tr(τ)σ,and similarly for general states

Let V : H → K = H⊗ E an isometry, |ψ〉 → V |ψ〉

Consider the following quantum operation :

Φ(|ψ〉〈ψ|) = trE(V |ψ〉〈ψ|V †) = tr2(V |ψ〉〈ψ|V †) and, generally,

Φ(ρ) = trE(V ρV †) = tr2(V ρV †)

Equivalent to Stinespring-Kraus-Choi representation
Φ(ρ) =

∑
i BiρB

†
i :V =

∑
i Bi ⊗ ei , so this is the general case



Channels as subspaces

Quantum operations on H = Cd are really
d-dimensional subspaces W = V (Cd) ⊂ Cd ⊗ Ck

The isometry V is not important: corresponds to fixing a basis ofW

Examples:
• k = 1 or, more generally, V (ξ) = ξ ⊗ η (fixed η) ⇒
Φ(|ξ〉〈ξ|) = tr2(|ξ ⊗ η〉〈ξ ⊗ η|) = |ξ〉〈ξ| tr(|η〉〈η|) = |ξ〉〈ξ|, or
Φ = IMd

• V (ξ) = η ⊗ ξ ⇒ ∀ρ Φ(ρ) = |η〉〈η|

• V = k−1/2
∑k

i=1 Ui ⊗ ei , Ui ’s i.i.d. random unitaries
If instead of Ui ’s we had i.i.d. Gaussian matrices, the range of V
would be a Haar-random subspace of Cd ⊗ Ck

Φ(ρ) = k−1
∑

i UiρU
†
i



Range of a channel and the Schmidt decomposition

W associated to Φ

For a pure state ϕ = Vψ ∈ W, the accessible part tr2(|ϕ〉〈ϕ|) of
ϕ, or Φ(|ψ〉〈ψ|), is simply encoded in its “Schmidt decomposition”

ϕ =
∑

j sj uj ⊗ vj

(uj), (vj) are orthonormal sequences in Cd and Ck

This is more or less SVD of the matrix

A =
∑

j sj |uj〉〈vj |
that can be identified with ϕ



The image of a pure state |ψ〉〈ψ| under Φ

Φ(|ψ〉〈ψ|) = tr2(|ϕ〉〈ϕ|) =
∑

j

s2
j |uj〉〈uj |

Verification:

tr2(|ϕ〉〈ϕ|) = tr2
(
|
∑

i

si ui ⊗ vi 〉〈
∑

j

sj uj ⊗ vj |
)

=
∑
i ,j

si sj |ui 〉〈uj | tr(|vi 〉〈vj |)

=
∑

j

s2
j |uj〉〈uj |

Morale: important to understand the patterns of singular numbers
of A as A varies over an m-dimensional subspace W of the space
of d × k matrices



For future reference

If A =
∑

j sj |uj〉〈vj | is the matrix identified with ϕ, then

tr2(|ϕ〉〈ϕ|) =
∑

j

s2
j |uj〉〈uj | = AA†



Quantum channels, capacities and such

“One-shot” capacity of Φ (for transmitting classical information)

χ(Φ) := max
pα,ρα

S
(
Φ
(∑

α

pαρα
))
−
∑
α

pαS
(
Φ(ρα)

)
where S(ρ) = −tr(ρ log ρ) is the von Neumann entropy

(=
∑

j qj log(1/qj), if qj ’s are eigenvalues of ρ)

The “true” capacity is

χ∞(Φ) := lim
n→∞

1

n
χ
(
Φ⊗ Φ⊗ . . .⊗ Φ

)
(n fold product)



Additivity problems

Is χ∞(·) additive? I.e., is χ∞(Φ⊗Ψ)=χ∞(Φ) + χ∞(Ψ)?

This would follow if χ(·) was additive or even (Shor 2004 and
others) if the following much simpler quantity was additive

Smin(Φ) := min
ρ∈D(Cm)

S(Φ(ρ))

Smin is called the “minimum output entropy”



Rényi entropy and multiplicativity problems

Additivity of the minimum output entropy would follow from
additivity of the minimum output p-Rényi entropy

Smin
p (Φ) := min

ρ∈D(Cm)
Sp(Φ(ρ))

for p > 1, where Sp(σ) := 1
1−p log(trσp) = p

1−p log ‖σ‖p,

where ‖τ‖p =
(
tr
(
τ †τ
)p/2)1/p

is the Schatten p-norm.
(Let p → 1.)

Modulo normalizing factors and logarithmic change of variables,
Smin

p (Φ) is equivalent to maxρ∈D(Cm) ‖Φ(ρ)‖p, or ‖Φ‖1→p.

Additivity of Smin
p (Φ) is equivalent to multiplicativity of ‖Φ‖1→p.



Additivity/multiplicativity problems - recapitulation

For completely positive (trace preserving) maps

Smin(Φ⊗Ψ)
?
= Smin(Φ) + Smin(Ψ)

‖Φ⊗Ψ‖1→p
?
= ‖Φ‖1→p‖Ψ‖1→p (p > 1)

The mins and the norms are attained on pure states, so all these
quantities depend on the patterns of eigenvalues of Φ(|ψ〉〈ψ|).

In view of prior remarks, this is equivalent to understanding the
patterns of singular numbers of matrices varying over
m-dimensional subspaces W of the space of d × k matrices.

“ No” and “ No” (Hayden-Winter 2008, Hastings 2009)



Focus on ‖Φ‖1→p

Let W be the m-dimensional subspace of Cd ⊗ Ck

(or Md×k) associated with Φ

‖Φ‖1→p = maxϕ∈W, |ϕ|=1 ‖tr2(|ϕ〉〈ϕ|)‖p

If ϕ =
∑

j sj uj ⊗ vj ,this becomes

‖
∑

j s2
j |uj〉〈uj |‖p =

(∑
j s2p

j

)1/p
= ‖A‖22p = ‖AA†‖p,

where A =
∑

j sj |uj〉〈vj | is the d × k matrix identified with ϕ.

In other words

‖Φ‖1/21→p = maxA∈W
‖A‖2p

‖A‖2



Milman’s version of Dvoretzky’s theorem

Consider the n-dimensional Euclidean space (over R or C)
endowed with the Euclidean norm | · | and some other norm ‖ · ‖
such that, for some b > 0, ‖ · ‖ ≤ b| · |. Denote M = E‖X‖, where
X is a random variable uniformly distributed on the unit Euclidean
sphere. Let ε > 0 and let m ≤ cε2(M/b)2n, where c > 0 is an
appropriate (computable) universal constant. Then, for most
m-dimensional subspaces E we have

∀x ∈ E , (1− ε)M|x | ≤ ‖x‖ ≤ (1 + ε)M|x |.

A similar statement holds for Lipschitz functions in place of norms.



Dvoretzky’s theorem for Schatten classes (FLM ‘77)

For the Schatten norm ‖ · ‖q with q = 2p > 2, k = d and ε = 1
2

we get b = 1 and M ∼ d1/q−1/2, hence if

m ∼ M2d2 ∼
(
d1/q−1/2

)2
d2 = d1+2/q = d1+1/p,

then for a generic m-dimensional subspace W of Md

∀A ∈ W d1/q−1/2‖A‖2 ≤ ‖A‖q ≤ Cd1/q−1/2‖A‖2
Accordingly, for the associated (random) channel Φ

‖Φ‖1→p =

(
max
A∈W

‖A‖2p

‖A‖2

)2

≤
(
Cd1/q−1/2

)2
= C 2d1/p−1

which is � 1 for large d and nearly as small as it can be:
‖Φ‖1→p ≥ d1/p−1 always.

So it is clear that we are up to something.



Why M ∼ d1/q−1/2?

If q =∞, ‖ · ‖∞ = ‖ · ‖op, so E‖X‖op ∼ 2d−1/2

(2 is the same as in the Wigner semi-circle law)

Obviously E‖X‖2 = 1

For q ∈ (2,∞) we interpolate (Hölder inequality)



The counterexample to multiplicativity

Need ‖Φ⊗Ψ‖1→p > ‖Φ‖1→p‖Ψ‖1→p

Ψ = Φ? Ψ = Φ′ (independent copy)?

What works is Ψ = Φ!

Fact 1 : If Φ : B(Cm)→ B(Cd) is associated to an m-dimensional
subspace of Cd ⊗ Ck , then there is an input state
σ ∈ D(Cm ⊗ Cm) such that

(
Φ⊗ Φ

)
(σ) has an eigenvalue ≥ m

kd ,

hence ‖Φ⊗ Φ‖1→p ≥ m
kd

In our setting m
kd ∼

d1+1/p

d2 = d1/p−1, so

‖Φ⊗ Φ‖1→p ≥ cd1/p−1

while

‖Φ‖1→p · ‖Φ‖1→p =
(
‖Φ‖1→p

)2 ≤ (C 2d1/p−1
)2 � cd1/p−1



The counterexample to additivity

of Smin(·) is more subtle. The analysis of a single random channel
is based on two facts

Fact 2 : ∀σ ∈ D(Cd) S(σ) ≥ S
(

Id
d

)
− d

∥∥σ − Id
d

∥∥2

HS

Consequently ∀Φ :Mm →Md

Smin(Φ) ≥ log(d)− d · max
ρ∈D(Cd )

∥∥∥∥Φ(ρ)− Id
d

∥∥∥∥2

HS

This reduces the study of the somewhat involved quantity Smin(·)
to upper-bounding

∥∥σ − Id
d

∥∥
HS

for σ in the range of Φ



Fact 3 : If k ∼ d2,m ∼ d2, then, for a typical m-dimensional
subspace W ⊂Md×k ,

max
A∈W,‖A‖HS=1

∥∥∥∥AA† − Id
d

∥∥∥∥
HS

≤ C ′

d

Recall: AA† = Φ(|ψ〉〈ψ|), where ψ is the unit vector corresponding
to A and Φ is the channel associated to W.

Combining the estimates

Smin(Φ) ≥ log(d)− d

(
C ′

d

)2

= log(d)− O

(
1

d

)
On the other hand, the “large eigenvalue” argument gives for the
composite channel

Smin(Φ⊗ Φ̄) ≤ log(d2)− Ω

(
log d

d

)



Payback to geometric functional analysis

Fact 3 essentially says that W, when endowed with the Schatten
4-norm, is 1 + O( 1

d2 )-Euclidean.

On the other hand, applying directly Dvoretzky’s theorem for

that choice of parameters gives only 1 + O
(

1√
d

)



Is this good or bad?

An affirmative answer would greatly simplify the theory: BAD

On the other hand, a negative answer means that entanglement
allows using quantum channels more efficiently than previously
thought: GOOD

But to exploit this opportunity one would need explicit maps for
reasonable values of the parameters m, d


