The interface between quantum information theory and functional analysis. Additivity conjectures and Dvoretzky's theorem.

Stanislaw Szarek
Paris 6/Case Western Reserve

BIRS, June 28, 2010

Collaborators:
G. Aubrun, E. Werner
J. Math. Phys. 51, 022102 (2010); arxiv:1003.4925
http://www.math.jussieu.fr/~szarek/

Talk summary

- overview of certain aspects of quantum information theory: paradigms, concepts, notation
- additivity/multiplicativity problems
- an approach to those problems via tools of geometric functional analysis, notably Dvoretzky's theorem

Conference "Perspectives in High Dimensions"

Cleveland, August 2 until August 6, 2010
http://www.case.edu/artsci/math/perspectivesInHighDimensions/

Quantum information theory

(from the geometric functional analysis angle)

- A complex Hilbert space \mathcal{H}, usually $\mathcal{H}=\mathbb{C}^{d}$, and the C^{*}-algebra $\mathcal{B}(\mathcal{H}), \mathcal{B}\left(\mathbb{C}^{d}\right)=\mathcal{M}_{d}$
- The real space $\mathcal{M}_{d}^{s a}$ of $d \times d$ Hermitian matrices
- The positive semi-definite cone $\mathcal{P S D} \subset \mathcal{M}_{d}^{\text {sa }}$
- The base of $\mathcal{P S D}$ consisting of density matrices:
$\mathcal{D}(\mathcal{H}):=\mathcal{P S D} \cap\{\operatorname{tr}(\cdot)=1\} \sim$ the states of $\mathcal{B}(\mathcal{H})=$ the positive face of the unit ball in the trace class (1-Schatten) norm
- Completely positive (CP) maps $\Phi: \mathcal{B}\left(\mathcal{H}_{1}\right) \rightarrow \mathcal{B}\left(\mathcal{H}_{2}\right)$, usually also required to be trace preserving (TP)

More context and more notation

Unit vector $\psi \in \mathcal{H}=\mathbb{C}^{d}$ (or $\left.|\psi\rangle\right)$: "state" of a quantum system with d levels
$d=2 \rightarrow$ qubits
$\rho=\psi \psi^{\dagger}=|\psi\rangle\langle\psi|$: the corresponding rank one projection, or

- a pure state of $\mathcal{B}(\mathcal{H})$, an element of $\mathcal{B}(\mathcal{H})^{*}$ via duality $(A, \rho):=\operatorname{tr}\left(A \rho^{\dagger}\right)$ or
- an element of the projective space $\mathbb{C P}^{d-1}$

Mixed states: $\rho=\sum_{\alpha} p_{\alpha}\left|\psi_{\alpha}\right\rangle\left\langle\psi_{\alpha}\right|$ with $\sum_{\alpha} p_{\alpha}=1$
The set of mixed states coincides with $\mathcal{D}(\mathcal{H})=\mathcal{P S D} \cap\{\operatorname{tr}(\cdot)=1\}$

Measurements

$\left|\left\langle\psi \mid e_{j}\right\rangle\right|^{2}=\left\langle e_{j} \mid \psi\right\rangle\left\langle\psi \mid e_{j}\right\rangle=\left\langle e_{j}\right| \rho\left|e_{j}\right\rangle=\operatorname{tr}\left(\rho\left|e_{j}\right\rangle\left\langle e_{j}\right|\right):$
the probability of j th outcome under measurement "in the basis (e_{j})" for $\rho=|\psi\rangle\langle\psi|$,or general ρ

More general measurements schemes (POVM):
Given $P_{i} \in \mathcal{P S D}$ with $\sum_{i} P_{i}=\mathrm{Id}$, the probability of the i th outcome is $\operatorname{tr}\left(\rho P_{i}\right)$
In general, P_{i} 's do not need to be projections

Bi- or multipartite systems, entanglement

m systems (or particles) : $\mathcal{K}=\mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \ldots \otimes \mathcal{H}_{m}$
Example: our apparatus and environment $\mathcal{K}=\mathcal{H} \otimes \mathcal{E}$
Pure separable state (product vector): $\psi=\xi \otimes \eta$
General separable states:

$$
\mathcal{S}=\left\{\sum_{\alpha} p_{\alpha}\left|\psi_{\alpha}\right\rangle\left\langle\psi_{\alpha}\right|: \psi_{\alpha} \text { product vectors }\right\}
$$

Entangled states: $\mathcal{D} \backslash \mathcal{S}$
$\operatorname{conv}(-\mathcal{D} \cup \mathcal{D})=$ the unit ball of trace class
$\operatorname{conv}(-\mathcal{S} \cup \mathcal{S})=$ the unit ball of the projective tensor product of trace class spaces on respective subsystems

Partial transpose, Peres-Horodecki criterion

Bipartite system: $\mathcal{K}=\mathcal{H}_{1} \otimes \mathcal{H}_{2}$
Partial transpose $\mathcal{B}(\mathcal{K}) \xrightarrow{T_{2}} \mathcal{B}(\mathcal{K}): \quad T_{2}\left(\rho_{1} \otimes \rho_{2}\right)=\rho_{1} \otimes \rho_{2}^{t}$ etc.
Easy: ρ separable $\Rightarrow T_{2}(\rho)$ separable $\Rightarrow T_{2}(\rho) \in \mathcal{P S D}$
Criterion: $T_{2}(\rho) \notin \mathcal{P S D} \Rightarrow \rho$ entangled
" \Leftrightarrow " only for 2×2 and 2×3 systems
(Størmer-Woronowicz)
PPT states: $\quad \mathcal{P} \mathcal{P} \mathcal{T}:=\mathcal{D} \cap T_{2}^{-1}(\mathcal{D})$
Entangled PPT states: example of undistillable entanglement (not defined)

Quantum vs. classical correlations, Tsirelson bound
$X_{1}, X_{2}, \ldots, \quad Y_{1}, Y_{2}, \ldots$ random variables; $\left\|X_{j}\right\|_{\infty},\left\|Y_{k}\right\|_{\infty} \leq 1$
Covariance matrix: $\left(\mathbb{E} X_{j} Y_{k}\right)_{j, k}$
Possible covariance matrices: $\mathcal{C}:=\operatorname{conv}\left\{\left(\delta_{j} \eta_{k}\right)_{j, k}: \delta_{j}, \eta_{k}= \pm 1\right\}$
\mathcal{C} - a polytope; faces \sim Bell inequalities
Quantum covariance matrices:
$\mathcal{Q}:=\left\{\left(\operatorname{tr}\left(\rho\left(U_{j} \otimes V_{k}\right)\right)\right)_{j, k}: \rho \in \mathcal{D}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right),\left\|U_{j}\right\|_{\infty},\left\|V_{k}\right\|_{\infty} \leq 1\right\}$
Tsirelson: $\mathcal{Q}=\operatorname{conv}\left\{\left(\left\langle u_{j} \mid v_{k}\right\rangle\right)_{j, k}: u_{j}, v_{k} \in \mathcal{H},\left|u_{j}\right|,\left|v_{k}\right| \leq 1\right\}$ In particular, $\mathcal{C} \nsubseteq \mathcal{Q} \subset K_{G}^{\mathbb{R}} \mathcal{C}$

Quantum operations, channels

Evolution of a (closed) system in discrete time :
$\psi=|\psi\rangle$ input, $U \psi=U|\psi\rangle$ output, $\quad U$ unitary (or an isometry) In the language of states : $|\psi\rangle\langle\psi| \rightarrow U|\psi\rangle\langle\psi| U^{\dagger}$

Quantum operation (channel) $\rho \rightarrow \Phi(\rho)=U_{\rho} U^{\dagger}$ (valid also for mixed states)

These are examples of "elementary" completely positive maps. For open systems, quantum formalism allows also other CP maps as quantum operations. However, by Stinespring-Kraus-Choi theorem all such maps can be "reduced" to elementary ones

$$
\rho \rightarrow \Phi(\rho)=\sum_{j} B_{j} \rho B_{j}^{\dagger}
$$

Quantum operations via partial trace

$\mathcal{K}=\mathcal{H} \otimes \mathcal{E}$ (e.g., our apparatus and environment)
Accessible part of a product state $\xi \otimes \eta$ is just ξ
Accessible part of φ is $\operatorname{tr}_{\mathcal{E}}(|\varphi\rangle\langle\varphi|)$, where $\operatorname{tr}_{\mathcal{E}}$ is the partial trace induced by $\operatorname{tr}_{\mathcal{E}}(\sigma \otimes \tau)=\operatorname{tr}(\tau) \sigma$, and similarly for general states

Let $V: \mathcal{H} \rightarrow \mathcal{K}=\mathcal{H} \otimes \mathcal{E}$ an isometry, $|\psi\rangle \rightarrow V|\psi\rangle$
Consider the following quantum operation :
$\Phi(|\psi\rangle\langle\psi|)=\operatorname{tr}_{\mathcal{E}}\left(V|\psi\rangle\langle\psi| V^{\dagger}\right)=\operatorname{tr}_{2}\left(V|\psi\rangle\langle\psi| V^{\dagger}\right)$ and, generally,
$\Phi(\rho)=\operatorname{tr}_{\mathcal{E}}\left(V \rho V^{\dagger}\right)=\operatorname{tr}_{2}\left(V \rho V^{\dagger}\right)$
Equivalent to Stinespring-Kraus-Choi representation $\Phi(\rho)=\sum_{i} B_{i} \rho B_{i}^{\dagger}: V=\sum_{i} B_{i} \otimes e_{i}$, so this is the general case

Channels as subspaces

Quantum operations on $\mathcal{H}=\mathbb{C}^{d}$ are really d-dimensional subspaces $\mathcal{W}=V\left(\mathbb{C}^{d}\right) \subset \mathbb{C}^{d} \otimes \mathbb{C}^{k}$

The isometry V is not important: corresponds to fixing a basis of \mathcal{W}
Examples:

- $k=1$ or, more generally, $V(\xi)=\xi \otimes \eta$ (fixed $\eta) \Rightarrow$ $\Phi(|\xi\rangle\langle\xi|)=\operatorname{tr}_{2}(|\xi \otimes \eta\rangle\langle\xi \otimes \eta|)=|\xi\rangle\langle\xi| \operatorname{tr}(|\eta\rangle\langle\eta|)=|\xi\rangle\langle\xi|$, or $\Phi=I_{\mathcal{M}_{d}}$
- $V(\xi)=\eta \otimes \xi \Rightarrow \forall \rho \Phi(\rho)=|\eta\rangle\langle\eta|$
- $V=k^{-1 / 2} \sum_{i=1}^{k} U_{i} \otimes e_{i}, \quad U_{i}$'s i.i.d. random unitaries If instead of U_{i} 's we had i.i.d. Gaussian matrices, the range of V would be a Haar-random subspace of $\mathbb{C}^{d} \otimes \mathbb{C}^{k}$
$\Phi(\rho)=k^{-1} \sum_{i} U_{i} \rho U_{i}^{\dagger}$

Range of a channel and the Schmidt decomposition

\mathcal{W} associated to Φ
For a pure state $\varphi=V \psi \in \mathcal{W}$, the accessible part $\operatorname{tr}_{2}(|\varphi\rangle\langle\varphi|)$ of φ, or $\Phi(|\psi\rangle\langle\psi|)$, is simply encoded in its "Schmidt decomposition"

$$
\varphi=\sum_{j} s_{j} u_{j} \otimes v_{j}
$$

$\left(u_{j}\right),\left(v_{j}\right)$ are orthonormal sequences in \mathbb{C}^{d} and \mathbb{C}^{k}

This is more or less SVD of the matrix

$$
A=\sum_{j} s_{j}\left|u_{j}\right\rangle\left\langle v_{j}\right|
$$

that can be identified with φ

The image of a pure state $|\psi\rangle\langle\psi|$ under Φ

$$
\Phi(|\psi\rangle\langle\psi|)=\operatorname{tr}_{2}(|\varphi\rangle\langle\varphi|)=\sum_{j} s_{j}^{2}\left|u_{j}\right\rangle\left\langle u_{j}\right|
$$

Verification:

$$
\begin{aligned}
\operatorname{tr}_{2}(|\varphi\rangle\langle\varphi|) & =\operatorname{tr}_{2}\left(\left|\sum_{i} s_{i} u_{i} \otimes v_{i}\right\rangle\left\langle\sum_{j} s_{j} u_{j} \otimes v_{j}\right|\right) \\
& =\sum_{i, j} s_{i} s_{j}\left|u_{i}\right\rangle\left\langle u_{j}\right| \operatorname{tr}\left(\left|v_{i}\right\rangle\left\langle v_{j}\right|\right) \\
& =\sum_{j} s_{j}^{2}\left|u_{j}\right\rangle\left\langle u_{j}\right|
\end{aligned}
$$

Morale: important to understand the patterns of singular numbers of A as A varies over an m-dimensional subspace \mathcal{W} of the space of $d \times k$ matrices

For future reference

If $A=\sum_{j} s_{j}\left|u_{j}\right\rangle\left\langle v_{j}\right|$ is the matrix identified with φ, then

$$
\operatorname{tr}_{2}(|\varphi\rangle\langle\varphi|)=\sum_{j} s_{j}^{2}\left|u_{j}\right\rangle\left\langle u_{j}\right|=A A^{\dagger}
$$

Quantum channels, capacities and such

"One-shot" capacity of Φ (for transmitting classical information)

$$
\chi(\Phi):=\max _{p_{\alpha}, \rho_{\alpha}} S\left(\Phi\left(\sum_{\alpha} p_{\alpha} \rho_{\alpha}\right)\right)-\sum_{\alpha} p_{\alpha} S\left(\Phi\left(\rho_{\alpha}\right)\right)
$$

where $S(\rho)=-\operatorname{tr}(\rho \log \rho)$ is the von Neumann entropy $\left(=\sum_{j} q_{j} \log \left(1 / q_{j}\right)\right.$, if q_{j} 's are eigenvalues of $\left.\rho\right)$

The "true" capacity is

$$
\chi^{\infty}(\Phi):=\lim _{n \rightarrow \infty} \frac{1}{n} \chi(\Phi \otimes \Phi \otimes \ldots \otimes \Phi) \quad(n \text { fold product })
$$

Additivity problems

Is $\chi^{\infty}(\cdot)$ additive? I.e., is $\chi^{\infty}(\Phi \otimes \Psi)=\chi^{\infty}(\Phi)+\chi^{\infty}(\Psi)$?
This would follow if $\chi(\cdot)$ was additive or even (Shor 2004 and others) if the following much simpler quantity was additive

$$
S_{\min }(\Phi):=\min _{\rho \in \mathcal{D}\left(\mathbb{C}^{m}\right)} S(\Phi(\rho))
$$

$S_{\text {min }}$ is called the "minimum output entropy"

Rényi entropy and multiplicativity problems

Additivity of the minimum output entropy would follow from additivity of the minimum output p-Rényi entropy

$$
S_{p}^{\min }(\Phi):=\min _{\rho \in \mathcal{D}\left(\mathbb{C}^{m}\right)} S_{p}(\Phi(\rho))
$$

for $p>1$, where $S_{p}(\sigma):=\frac{1}{1-p} \log \left(\operatorname{tr} \sigma^{p}\right)=\frac{p}{1-p} \log \|\sigma\|_{p}$, where $\|\tau\|_{p}=\left(\operatorname{tr}\left(\tau^{\dagger} \tau\right)^{p / 2}\right)^{1 / p}$ is the Schatten p-norm. (Let $p \rightarrow$ 1.)

Modulo normalizing factors and logarithmic change of variables, $S_{p}^{\min }(\Phi)$ is equivalent to $\max _{\rho \in \mathcal{D}\left(\mathbb{C}^{m}\right)}\|\Phi(\rho)\|_{p}$, or $\|\Phi\|_{1 \rightarrow p}$.

Additivity of $S_{p}^{\min }(\Phi)$ is equivalent to multiplicativity of $\|\Phi\|_{1 \rightarrow p}$.

Additivity/multiplicativity problems - recapitulation

For completely positive (trace preserving) maps

$$
\begin{gathered}
S_{\min }(\Phi \otimes \Psi) \stackrel{?}{=} S_{\min }(\Phi)+S_{\min }(\Psi) \\
\|\Phi \otimes \Psi\|_{1 \rightarrow p} \stackrel{?}{=}\|\Phi\|_{1 \rightarrow p}\|\Psi\|_{1 \rightarrow p} \quad(p>1)
\end{gathered}
$$

The mins and the norms are attained on pure states, so all these quantities depend on the patterns of eigenvalues of $\Phi(|\psi\rangle\langle\psi|)$.

In view of prior remarks, this is equivalent to understanding the patterns of singular numbers of matrices varying over m-dimensional subspaces \mathcal{W} of the space of $d \times k$ matrices.
" No" and "No" (Hayden-Winter 2008, Hastings 2009)

Focus on $\|\Phi\|_{1 \rightarrow p}$

Let \mathcal{W} be the m-dimensional subspace of $\mathbb{C}^{d} \otimes \mathbb{C}^{k}$ (or $\mathcal{M}_{d \times k}$) associated with Φ

$$
\|\Phi\|_{1 \rightarrow p}=\max _{\varphi \in \mathcal{W},|\varphi|=1}\left\|\operatorname{tr}_{2}(|\varphi\rangle\langle\varphi|)\right\|_{p}
$$

If $\varphi=\sum_{j} s_{j} u_{j} \otimes v_{j}$,this becomes

$$
\| \sum_{j} s_{j}^{2}\left|u_{j}\right\rangle\left\langle u_{j}\left\|_{p}=\left(\sum_{j} s_{j}^{2 p}\right)^{1 / p}=\right\| A\left\|_{2 p}^{2}=\right\| A A^{\dagger} \|_{p}\right.
$$

where $A=\sum_{j} s_{j}\left|u_{j}\right\rangle\left\langle v_{j}\right|$ is the $d \times k$ matrix identified with φ.
In other words

$$
\|\Phi\|_{1 \rightarrow p}^{1 / 2}=\max _{A \in \mathcal{W}} \frac{\|A\|_{2 p}}{\|A\|_{2}}
$$

Milman's version of Dvoretzky's theorem

Consider the n-dimensional Euclidean space (over \mathbb{R} or \mathbb{C}) endowed with the Euclidean norm $|\cdot|$ and some other norm $\|\cdot\|$ such that, for some $b>0,\|\cdot\| \leq b|\cdot|$. Denote $M=\mathbb{E}\|X\|$, where X is a random variable uniformly distributed on the unit Euclidean sphere. Let $\varepsilon>0$ and let $m \leq c \varepsilon^{2}(M / b)^{2} n$, where $c>0$ is an appropriate (computable) universal constant. Then, for most m-dimensional subspaces E we have

$$
\forall x \in E, \quad(1-\varepsilon) M|x| \leq\|x\| \leq(1+\varepsilon) M|x| .
$$

A similar statement holds for Lipschitz functions in place of norms.

Dvoretzky's theorem for Schatten classes (FLM '77)

For the Schatten norm $\|\cdot\|_{q}$ with $q=2 p>2, k=d$ and $\varepsilon=\frac{1}{2}$ we get $b=1$ and $M \sim d^{1 / q-1 / 2}$, hence if

$$
m \sim M^{2} d^{2} \sim\left(d^{1 / q-1 / 2}\right)^{2} d^{2}=d^{1+2 / q}=d^{1+1 / p}
$$

then for a generic m-dimensional subspace \mathcal{W} of \mathcal{M}_{d}
$\underset{\sim A}{\forall} \in \mathcal{W} d^{1 / q-1 / 2}\|A\|_{2} \leq\|A\|_{\mathcal{F}} \leq C d^{1 / q-1 / 2}\|A\|_{2}$
Accordingly, for the associated (random) channel Φ

$$
\|\Phi\|_{1 \rightarrow p}=\left(\max _{A \in \mathcal{W}} \frac{\|A\|_{2 p}}{\|A\|_{2}}\right)^{2} \leq\left(C d^{1 / q-1 / 2}\right)^{2}=C^{2} d^{1 / p-1}
$$

which is $\ll 1$ for large d and nearly as small as it can be: $\|\Phi\|_{1 \rightarrow p} \geq d^{1 / p-1}$ always.
So it is clear that we are up to something.

$$
\text { Why } M \sim d^{1 / q-1 / 2} ?
$$

If $q=\infty,\|\cdot\|_{\infty}=\|\cdot\|_{\text {op }}, \quad$ so $\quad \mathbb{E}\|X\|_{\text {op }} \sim 2 d^{-1 / 2}$
(2 is the same as in the Wigner semi-circle law)
Obviously $\mathbb{E}\|X\|_{2}=1$
For $q \in(2, \infty)$ we interpolate (Hölder inequality)

The counterexample to multiplicativity

Need $\quad\|\Phi \otimes \Psi\|_{1 \rightarrow p}>\|\Phi\|_{1 \rightarrow p}\|\Psi\|_{1 \rightarrow p}$
$\Psi=\Phi ? \Psi=\Phi^{\prime}$ (independent copy)?
What works is $\psi=\bar{\Phi}$!
Fact 1: If $\Phi: \mathcal{B}\left(\mathbb{C}^{m}\right) \rightarrow \mathcal{B}\left(\mathbb{C}^{d}\right)$ is associated to an m-dimensional subspace of $\mathbb{C}^{d} \otimes \mathbb{C}^{k}$, then there is an input state $\sigma \in \mathcal{D}\left(\mathbb{C}^{m} \otimes \mathbb{C}^{m}\right)$ such that $(\Phi \otimes \bar{\Phi})(\sigma)$ has an eigenvalue $\geq \frac{m}{k d}$, hence $\|\Phi \otimes \bar{\Phi}\|_{1 \rightarrow p} \geq \frac{m}{k d}$

In our setting $\frac{m}{k d} \sim \frac{d^{1+1 / p}}{d^{2}}=d^{1 / p-1}$, so

$$
\|\Phi \otimes \bar{\Phi}\|_{1 \rightarrow p} \geq c d^{1 / p-1}
$$

while

$$
\|\Phi\|_{1 \rightarrow p} \cdot\|\bar{\Phi}\|_{1 \rightarrow p}=\left(\|\Phi\|_{1 \rightarrow p}\right)^{2} \leq\left(C^{2} d^{1 / p-1}\right)^{2} \ll c d^{1 / p-1}
$$

The counterexample to additivity

of $S_{\text {min }}(\cdot)$ is more subtle. The analysis of a single random channel is based on two facts

Fact $2: \forall \sigma \in \mathcal{D}\left(\mathbb{C}^{d}\right) S(\sigma) \geq S\left(\frac{\mathrm{Id}}{d}\right)-d\left\|\sigma-\frac{\mathrm{Id}}{d}\right\|_{H S}^{2}$
Consequently $\forall \Phi: \mathcal{M}_{m} \rightarrow \mathcal{M}_{d}$

$$
S_{\min }(\Phi) \geq \log (d)-d \cdot \max _{\rho \in \mathcal{D}\left(\mathbb{C}^{d}\right)}\left\|\Phi(\rho)-\frac{\mathrm{Id}}{d}\right\|_{H S}^{2}
$$

This reduces the study of the somewhat involved quantity $S_{\text {min }}(\cdot)$ to upper-bounding $\left\|\sigma-\frac{\mathrm{Id}}{d}\right\|_{H S}$ for σ in the range of ϕ

Fact 3: If $k \sim d^{2}, m \sim d^{2}$, then, for a typical m-dimensional subspace $\mathcal{W} \subset \mathcal{M}_{d \times k}$,

$$
\max _{A \in \mathcal{W},\|A\|_{H S}=1}\left\|A A^{\dagger}-\frac{\mathrm{Id}}{d}\right\|_{H S} \leq \frac{C^{\prime}}{d}
$$

Recall: $\boldsymbol{A} A^{\dagger}=\Phi(|\psi\rangle\langle\psi|)$, where ψ is the unit vector corresponding to A and Φ is the channel associated to \mathcal{W}.

Combining the estimates

$$
S_{\min }(\Phi) \geq \log (d)-d\left(\frac{C^{\prime}}{d}\right)^{2}=\log (d)-O\left(\frac{1}{d}\right)
$$

On the other hand, the "large eigenvalue" argument gives for the composite channel

$$
S_{\min }(\Phi \otimes \bar{\Phi}) \leq \log \left(d^{2}\right)-\Omega\left(\frac{\log d}{d}\right)
$$

Payback to geometric functional analysis

Fact 3 essentially says that \mathcal{W}, when endowed with the Schatten 4-norm, is $1+O\left(\frac{1}{d^{2}}\right)$-Euclidean.

On the other hand, applying directly Dvoretzky's theorem for that choice of parameters gives only $1+O\left(\frac{1}{\sqrt{d}}\right)$

Is this good or bad?

An affirmative answer would greatly simplify the theory: BAD

On the other hand, a negative answer means that entanglement allows using quantum channels more efficiently than previously thought: GOOD

But to exploit this opportunity one would need explicit maps for reasonable values of the parameters m, d

