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Some motivation

The Blum-Shub-Smale model is a natural model to study
complexity questions questions of algebraic problems over
real as well as complex numbers.
The role of convexity is mysterious. For instance,
semi-definite programming is unlikely to be NPR-complete
but not known to be in PR either. (cf. the problem of
deciding whether a real quartic polynomial has a zero in Rn

is already NPR-complete.)
However, there are various structural complexity results in
the B-S-S model that mirrors those in the classical discrete
complexity theory.
In particular, this talk will be on the B-S-S analogue of
“counting”.
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A quick primer of basic definitions and notation

Initially let k = Z=2Z = f0̄; 1̄g.
A language L is a set

[

n>0

Ln; Ln � kn

(abusing notation a little we will identify L with the
sequence (Ln)n>0).
A language

L = (Ln)n>0 2 P

if there exists a Turing machine M that given x 2 kn

decides whether x 2 Ln or not in nO(1) time.

Saugata Basu Toda’s theorem - real and complex



Motivation
(Discrete) Polynomial Hierarchy

Blum-Shub-Smale Models of Computation
Algorithmic Algebraic/Semi-algebraic Geometry

Real/Complex Analogue of Toda’s Theorem
Proof

A quick primer of basic definitions and notation

Initially let k = Z=2Z = f0̄; 1̄g.
A language L is a set

[

n>0

Ln; Ln � kn

(abusing notation a little we will identify L with the
sequence (Ln)n>0).
A language

L = (Ln)n>0 2 P

if there exists a Turing machine M that given x 2 kn

decides whether x 2 Ln or not in nO(1) time.

Saugata Basu Toda’s theorem - real and complex



Motivation
(Discrete) Polynomial Hierarchy

Blum-Shub-Smale Models of Computation
Algorithmic Algebraic/Semi-algebraic Geometry

Real/Complex Analogue of Toda’s Theorem
Proof

A quick primer of basic definitions and notation

Initially let k = Z=2Z = f0̄; 1̄g.
A language L is a set

[

n>0

Ln; Ln � kn

(abusing notation a little we will identify L with the
sequence (Ln)n>0).
A language

L = (Ln)n>0 2 P

if there exists a Turing machine M that given x 2 kn

decides whether x 2 Ln or not in nO(1) time.

Saugata Basu Toda’s theorem - real and complex



Motivation
(Discrete) Polynomial Hierarchy

Blum-Shub-Smale Models of Computation
Algorithmic Algebraic/Semi-algebraic Geometry

Real/Complex Analogue of Toda’s Theorem
Proof

Primer (cont.)

A language
L = (Ln)n>0 2 NP

if there exists a polynomial m(n), and a language
L0 = (L0n)n>0 2 P such that

x 2 Ln () (9 y 2 km(n)) (y;x) 2 L0m+n:

A language
L = (Ln)n>0 2 coNP

if there exists a polynomial m(n), and a language
L0 = (L0n)n>0 2 P such that

x 2 Ln ()
�
8 y 2 km(n)

�
(y;x) 2 L0m+n:
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Discrete Polynomial Time Hierarchy– A Quick
Reminder

A language
L = (Ln)n>0 2 Σ!

if there exists a language L0 = (L0n)n>0 2 P such that

x 2 Ln

m

(Q1y1 2 km1)(Q2y2 2 km2) : : : (Q!y! 2 km!)

(y1; : : : ;y!;x) 2 L0m+n

where m(n) = m1(n) + � � �+ m!(n) = nO(1) and for 1 � i � !,
Qi 2 f9;8g, Q1 = 9:
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Reminder (cont.)

Similarly a language

L = (Ln)n>0 2 Π!

if there exists a language L0 = (L0n)n>0 2 P such that

x 2 Ln

m

(Q1y1 2 km1)(Q2y2 2 km2) � � � (Q!y! 2 km!)

(y1; : : : ;y!;x) 2 L0m+n

where m(n) = m1(n) + � � �+ m!(n) = nO(1) and for 1 � i � !,
Qi 2 f9;8g, Q1 = 8. Notice that

P = Σ0 = Π0;

NP = Σ1; coNP = Π1:
Saugata Basu Toda’s theorem - real and complex
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The polynomial time hierarchy

Also, notice the inclusions

Σi � Πi+1;Σi � Σi+1

Πi � Σi+1;Πi � Πi+1

The polynomial time hierarchy is defined to be

PH def
=
[

!�0

(Σ! [ Π!) =
[

!�0

Σ! =
[

!�0

Π!:

Central problem of CS is to prove that PH is a proper
hierarchy (as is widely believed), and in particular to prove
P 6= NP.

Saugata Basu Toda’s theorem - real and complex
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The Class #P

In order to develop an “algebraic” version of complexity
theory Valiant introduced certain complexity classes of
functions;
A sequence of functions

(fn : kn ! N)n>0

is said to be in the class #P if there exists L = (Ln)n>0 2 P
such that for x 2 kn

fn(x) = card(Lm+n;x); m = nO(1);

where Lm+n;x is the fibre ��1(x) \ Lm+n; and
� : km+n ! kn the projection map on the last n
co-ordinates.

Saugata Basu Toda’s theorem - real and complex
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Toda’s Theorem

Toda’s theorem is a seminal result in discrete complexity theory
and gives the following inclusion.

Theorem (Toda (1989))

PH � P#P

“illustrates the power of counting”
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Blum-Shub-Smale model

Generalized TM where k is allowed to be any ring (we
restrict ourselves to the cases k = C or R).
Setting k = Z=2Z (or any finite field) recovers the classical
complexity classes.
Informally, such a TM should be thought of as a program
that accepts as input x 2 kn, and at each step

1 either makes a ring computation zi  zj � z`;
2 or branches according to a test zjf=; 6=g0 in case k = C, or

the test zjf>;<;=g0 in case k = R;
3 or accepts/rejects.

A B-S-S machine accepts for every n a subset Sn � kn.
1 In case k = C, each Sn is a constructible subset of Cn,
2 in case k = R, each Sn is a semi-algebraic subset of Rn.

Saugata Basu Toda’s theorem - real and complex
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complexity classes.
Informally, such a TM should be thought of as a program
that accepts as input x 2 kn, and at each step

1 either makes a ring computation zi  zj � z`;
2 or branches according to a test zjf=; 6=g0 in case k = C, or

the test zjf>;<;=g0 in case k = R;
3 or accepts/rejects.

A B-S-S machine accepts for every n a subset Sn � kn.
1 In case k = C, each Sn is a constructible subset of Cn,
2 in case k = R, each Sn is a semi-algebraic subset of Rn.
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Complexity Classes

Complexity classes Pk ;NPk ;coNPk and more generally
PHk are defined as before (for k = C;R).
B-S-S developed a theory of NP-completeness.
In case, k = C the problem of determining if a system of
n + 1 polynomial equations in n variables has a common
zero in Cn is NPC-complete.
In case, k = R the problem of determining if a quartic
polynomial in n variables has a common zero in Rn is
NPR-complete.
It is unknown if PC = NPC (respectively, PR = NPR) just as
in the discrete case.
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Two classes of problems

The most important algorithmic problems studied in this area
fall into two broad sub-classes:

1 the problem of quantifier elimination, and its special cases
such as deciding a sentence in the first order theory of
reals/complex numbers, or deciding emptiness of
semi-algebraic/constructible sets.

2 the problem of computing topological invariants of
semi-algebraic/constructible sets, such as the number of
connected components, Euler-Poincaré characteristic, and
more generally all the Betti numbers of
semi-algebraic/constructible sets.
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Analogy with Toda’s Theorem

The classes PH and #P appearing in the two sides of the
inclusion in Toda’s Theorem can be identified with the two
broad classes of problems in algorithmic
algebraic/semi-algebraic geometry;
the class PH with the problem of deciding sentences with a
fixed number of quantifier alternations;
the class #P with the problem of computing topological
invariants of semi-algebraic/constructible sets, namely
their Betti numbers, which generalizes the notion of
cardinality for finite sets;
it is thus quite natural to seek a real as well as complex
analogue of Toda’s theorem.
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Real/complex analogue of #P

In order to define real analogues of counting complexity
classes of discrete complexity theory, it is necessary to
identify the proper notion of “counting” in the context of
algebraic/semi-algebraic geometry.
Counting complexity classes over the reals/complex
numbers have been defined previously by Meer (2000) and
studied extensively by other authors Burgisser, Cucker et
al (2006). These authors used a straightforward
generalization to semi-algebraic/constructible sets of
counting in the case of finite sets; namely

f (S) = card(S); if card(S) <1;

= 1 otherwise.
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An alternative definition

In our view this is not fully satisfactory, since the count
gives no information when the set is infinite, and most
interesting semi-algebraic/constructible sets are infinite.
If one thinks of “counting” a semi-algebraic/constructible
set S � Rk or Ck as computing certain discrete invariants,
then a natural mathematical candidate is its sequence of
Betti numbers, b0(S); : : : ;bk�1(S), or more succinctly
the Poincaré polynomial of S, namely

PS(T )
def
=
X

i�0

bi(S) T i :

In case card(S) <1, we have that
b0(S) = PS(0) = card(S).
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Definition of #PyR

We call a sequence of functions

(fn : Rn ! Z[T ])n>0

to be in class #Py
R if there exists (Sn � Rn)n>0 2 PR such that

for x 2 Rn

fn(x) = PSm+n;x ; m = nO(1);

where Sm+n;x = Sm+n \ ��1(x) and � : Rm+n ! Rn is the
projection on the last n coordinates.
Similar definition over C as well.
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Counting and Betti numbers

The connection between counting points of varieties and
their Betti numbers is more direct over fields of positive
characteristic via the zeta function.
The zeta function of a variety defined over Fp is the
exponential generating function of the sequence whose
n-th term is the number of points in the variety over Fpn .
The zeta function depends on the Betti numbers of the
variety with respect to a certain (`-adic) co-homology
theory.
Thus, the problems of “counting” varieties and computing
their Betti numbers, are connected at a deeper level, and
thus our definition of #Py

R is not entirely ad hoc.
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Real/Complex analogue of Toda’s theorem

It is now natural to formulate the following conjectures.

Conjecture

PHR � P#Py
R

Conjecture

PHC � P#Py
C

For technical reasons we are unable to prove this without a
further compactness hypothesis on the left hand-side.
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The compact fragment of real polynomial hierarchy

We say that a sequence of semi-algebraic sets

(Sn � Sn)n>0 2 Σc
R;!

if there exists another sequence (S0
n)n>0 2 PR such that each

S0
n is compact and

x 2 Sn

if and only if
(Q1y1 2 Sm1)(Q2y2 2 Sm2) : : : (Q!y! 2 Sm!)

(y1; : : : ; y!; x) 2 S0
m+n

where m(n) = m1(n) + � � �+ m!(n) = nO(1) and for 1 � i � !,
Qi 2 f9;8g, and Qj 6= Qj+1;1 � j < !, Q1 = 9 . The compact
class Πc

R;! is defined analogously.
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The compact real polynomial hierarchy (cont.)

We define

PHc
R

def
=
[

!�0

(Σc
R;! [ Πc

R;!) =
[

!�0

Σc
R;! =

[

!�0

c
R;!:

Notice that the semi-algebraic sets belonging to any language
in PHc

R are all semi-algebraic compact (in fact closed
semi-algebraic subsets of spheres). Also, notice the inclusion

PHc
R � PHR:
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Main theorem

Theorem (B-Zell,2008)

PHc
R � P#Py

R
R :

Theorem (B.,2009)

PHc
C � P#Py

C
C :
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Summary of the Main Idea

Our main tool is a topological construction which given a
semi-algebraic set S � Rm+n, p � 0, and �Y : Rm+n ! Rn

denoting the projection along (say) the Y-co-ordinates,
constructs efficiently a semi-algebraic set, Dp

Y(S), such
that

bi(�Y(S)) = bi(D
p
Y(S));0 � i < p:

Notice that even if there exists an efficient (i.e. polynomial
time) algorithm for checking membership in S, the same
need not be true for the image �Y(S).
A second topological ingredient is Alexander-Lefschetz
duality which relates the Betti numbers of a compact
subset K of the sphere Sn with those of Sn � K .
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Complex join fibered over a map

Let A � Pk
C � P`

C be a constructible set defined by a first-order
multi-homogeneous formula,

�(X0; : : : ;Xk ; Y0; : : : ;Y`)

and let �Y : Pk
C � P`

C ! Pk
C be the projection along the

Y-co-ordinates.
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Complex join fibered over a map (cont.)

For p > 0, the p-fold complex join of A fibered over the map �Y,
Jp

C;Y(A) � Pk
C � P(`+1)(p+1)�1

C , is defined by the formula

Jp
C;Y(�)(X0; : : : ;Xk ; Y 0

0 ; : : : ;Y
0
` ; : : : ;Y

p
0 ; : : : ;Y

p
` )

def
=

p̂

i=0

�(X0; : : : ;Xk ; Y i
0; : : : ;Y

i
`):
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Main topological theorem

Theorem

Assume that A is closed. Then, for every p � 0, we have that

P�Y(A) = (1� T 2)PJp
C;Y(A) mod T p:
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The pseudo-Poincaré polynomial

We denote for any constructible S � Pn
C,

QS(T )
def
=
X

j�0

(b2j(S)� b2j�1(S))T j :

In other words:
QS = Peven

S � T Podd
S :
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Alexander-Lefschtez duality

Let A � Pn
C be any constructible subset. Then,

QA(T ) = �Recn(QPn
CnA) +

nX

i=0

T i ;

where for any polynomial P(T ),

Recn(P) := T nP(1=T ):
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Future work and open problems

Remove compactness hypothesis.
Obtain the classical Toda’s theorem via algebro-geometric
means.
Develop a “Valiant type” theory over R and C or even more
general structures. The “counting functions” considered
should not be polynomials (such as the determinant,
permanent etc.) as is done over finite fields, but rather
constructible functions. We have a formulation of a
VPy

k 6= VNPy
k problem for k = R or C.
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