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Why?

e By a theorem of Brocker, Scheiderer in real algebraic
geometry, every polyhedron in R” can be described by a few
(z n2) polynomial inequalities.
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Why?

e By a theorem of Brocker, Scheiderer in real algebraic
geometry, every polyhedron in R” can be described by a few
(z n2) polynomial inequalities.

e Martin Grotschel Impact for hard combinatorial optimization
problems?, Constructions?, Approximations by polynomial
inequalities?
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e Brocker, Scheiderer, '84,...,'89. Every basic closed
semi-algebraic set S C R” can be represented by at most
n(n+ 1)/2 polynomial inequalities, i.e., there exist
P1, .-, Pn(n+1)/2 € R[X] such that

S={xeR":pi(x) 20,...,pnns1)/2(x) > 0}.
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e Brocker, Scheiderer, '84,...,'89. Every basic closed
semi-algebraic set S C R” can be represented by at most
n(n+ 1)/2 polynomial inequalities, i.e., there exist
P1,-- -3 Pn(n+1)/2 € R[X] such that

S={xeR":pi(x) 20,...,pnns1)/2(x) > 0}.

In the case of basic open semi-algebraic sets, n polynomials
suffice, and both bounds are best possible.
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e Open: For instance, the positive orthant
{x €R":x; >0, 1< i< n} cannot be described by less than
n strict polynomial inequalities.
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e Open: For instance, the positive orthant
{x €R":x; >0, 1< i< n} cannot be described by less than
n strict polynomial inequalities.

e Closed: For instance, the family of stacked cubes cannot be
described by less than n(n + 1)/2 polynomial inequalities.
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e Open: For instance, the positive orthant
{x €R":x; >0, 1< i< n} cannot be described by less than
n strict polynomial inequalities.

e Closed: For instance, the family of stacked cubes cannot be
described by less than n(n + 1)/2 polynomial inequalities.

e Can the bound be improved, e.g., for convex sets?
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Consequences for polyhedra

Every polyhedron
P={xeR":(aj,x) < b;, 1 <i<m},

given as the intersection of finitely many linear inequalities, can
be described by at most n(n+ 1)/2 polynomial inequalities.
The interior of a polyhedron can even be described by n
polynomials.
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Consequences for polyhedra

e Every polyhedron
P={xeR":(aj,x) < b;, 1 <i<m},

given as the intersection of finitely many linear inequalities, can
be described by at most n(n+ 1)/2 polynomial inequalities.
The interior of a polyhedron can even be described by n
polynomials.

e Can the bound be improved?
Yes!

e Can we (really) construct these (few) polynomials?

It depends...!
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(Trivial) Examples



(Trivial) Examples

e The (regular) n-cube

Ch={xeR":-1<x<1,1<i<n}




(Trivial) Examples

e The (regular) n-cube (or any other parallelepiped)

Ch={xeR":-1<x,<1,1<i<n}

={xeR":(x)?<1,1<i<n}




(Trivial) Examples

e The n-simplex

Th={x€eR":x>0,x+ - +x, <1}




(Trivial) Examples

e The n-simplex

Th={x€eR":x>0,x+ - +x, <1}
:{XGR":X;(I—ZZ:,-X;()EO,1§i§n}.




e The regular n-crosspolytope

c;:{xeR";Z|x,-|g1}
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e The regular n-crosspolytope

i =

n

XER":Z|X,-|§1}

j
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e The regular n-crosspolytope

c::{xeR";Z|x,-|g1}
?

e Bosse, 2003, n = 3:

p1/2 = product of 4 facet defining in-
> equalities which do not have an edge in
common.
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e The regular n-crosspolytope

c::{xeR";Z|x,-|g1}
?

e Bosse, 2003, n = 3:

p1/2 = product of 4 facet defining in-
> equalities which do not have an edge in
common.

» po = circumsphere of (3.
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Grotschel&H., 2002.

e Each facet defining linear polynomial b; — (a;, x) is a factor of
one of the polynomials in a polynomial representation.
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e Each facet defining linear polynomial b; — (a;, x) is a factor of
one of the polynomials in a polynomial representation.

» Hence, the sum of the degrees in any polynomial representation
is at least the number of facets of the polyhedron.
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constructed from a polynomial representation of the basis plus
one additional polynomial.
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Grotschel&H., 2002.

Each facet defining linear polynomial b; — (a;, x) is a factor of
one of the polynomials in a polynomial representation.

» Hence, the sum of the degrees in any polynomial representation
is at least the number of facets of the polyhedron.

For every k-face there exist at least n — k polynomials in a
polynomial representation vanishing on aff F.

» Hence, a polynomial representation of a polyhedra having a
vertex consists of at least n polynomials.

For prisms and pyramids a polynomial representation can be
constructed from a polynomial representation of the basis plus
one additional polynomial.

For bi-pyramids?
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Dimension 2

e vom Hofe, 1992. For each polygon we can construct 3
polynomial inequalities representing the polygon.
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Dimension 2

e vom Hofe, 1992. For each polygon we can construct 3
polynomial inequalities representing the polygon.

e Bernig, 1998. For each (bounded) polygon we can construct 2
polynomial inequalities representing the polygon.
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o Let P={x € R2: (a;,x) < b;,1 <i < m} be a polygon.
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o Let P={x € R2: (a;,x) < b;,1 <i < m} be a polygon.

pr(x) = (b1 = (a1, x)) - (b2 = (a2, %)) - ... - (b — (am, X))

{p1(x) > 0}
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o Let P={x € R2: (a;,x) < b;,1 <i < m} be a polygon.

pr(x) = (b1 = (a1, x)) - (b2 = (a2, %)) - ... - (b — (am, X))

po(x) = concave polynomial through the vertices

{p1(x) > 0}
{po(x) > 0}
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e po(x) is of the form

Po(x):l_z)\i [W]M,

U
i=1 !

where w; are normal vectors of support hyperplanes of the
vertices,
li = min{w;, x), u; = max{w;, x)
xeP xeP
and \; > 0 and k are chosen such that py(x) vanishes on the
vertices.

Representing Polyhedra by Few Polynomials 11 / 27



e po(x) is of the form

U
i=1 !

where w; are normal vectors of support hyperplanes of the
vertices,

i = )r(neilg<Wi7X>a uj = TEal-?’(<Wi7X>

and \; > 0 and k are chosen such that py(x) vanishes on the
vertices.

e In particular, the degree depends on metric properties of the
polygon.
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e The obvious generalization of that 2-dimensional approach to
consider polynomials

pk(x) = Hsupport hyperplanes of k-faces, k=1,....n—1,

po(x) = concave polynomial through the vertices

does not work for n > 3 (see, e.g., crosspolytope).
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e Bosse& Grotschel&H., 2005. For every n-dimensional
polyhedron we can construct 2n polynomial inequalities
representing the polytope.
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e Bosse& Grotschel&H., 2005. For every n-dimensional
polyhedron we can construct 2n polynomial inequalities
representing the polytope.

e Consequence: Let

Sz{XER":fl(x)ZO,...,fm(x)EO}

with deg(f;) < d. Then we can find 2("Jgd) — 2 polynomials
representing the set S.
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Simple polytopes seem to be simpler

e Averkov&H. 2008. For every n-dimensional simple polytope
we can construct n polynomial inequalities representing the
polytope.

Representing Polyhedra by Few Polynomials 14 / 27



Simple polytopes seem to be simpler

e Averkov&H. 2008. For every n-dimensional simple polytope
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> Let [i(x) = b; — (a;,x) and let

P={xeR":[(x)>0,1<i< m}.
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Simple polytopes seem to be simpler

e Averkov&H., 2008. For every n-dimensional simple polytope
we can construct n polynomial inequalities representing the
polytope.

e Rough idea:
> Let [i(x) = b; — (a;,x) and let

P={xeR":[(x)>0,1<i< m}.

> Let

O | 1)

JC{1,...,m} ked
#J=j

be the j-th elementary symmetric polynomial of

h(x), ..y Im(X).
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» P={xeR":0i(x) >0,1<i<m}




| Let x € R" such that gj(x) >0, 1 </ < m. Let

F(t) =JJU) + 1) =D ai(x) t™ .

i=1 i=0

All coefficients are non-negative and hence, the roots —/;(x),
1 < i < m, are non-positive, i.e., x € P.
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» P={xeR":0i(x) >0,1<i<m}




>

» P={x€eR":0i(x)>0,1<i< m}.
If P is simple then there exists an € > 0 such that for
x€P+eB,
oi(x)>0,1<i<m-—n.



M Let x € P. Since P is simple, there exist at most n linear
forms [;(x) vanishing at x.

e Hence at least m — n linear forms are positive at x and so

gj(x) >0, j<m-—n.
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Il Let x € P. Since P is simple, there exist at most n linear
forms [;(x) vanishing at x.

e Hence at least m — n linear forms are positive at x and so
gj(x) >0, j<m-—n.
e Thus by continuity we can find an € > 0 such that for all

x € P+ eB,
oj(x) >0, j<m-—n.
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» P={xeR":0i(x)>0,1</< m}

» If P is simple then there exists an € > 0 such that for

x€P+eB,
oi(x)>0,1<i<m-—n.

» Thus
P={xeR":0m_ptit1(x) >0,0<i<n—1, p(x) >0},

where {x € R" : p.(x) > 0} is a "good” approximation of P.
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e A simple polytope P={x € R": [;(x) > 0,1 <i<m}is
described by the n polynomial inequalities

Pi(X) = Tmonsiin(x) 20, 1< i <n—1, po(x) >0,

where po(x) is a concave polynomial passing through the
vertices of P and which approximates P e-well.
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e A simple polytope P={x € R": [;(x) > 0,1 <i<m}is
described by the n polynomial inequalities

Pi(X) = Tmonsiin(x) 20, 1< i <n—1, po(x) >0,

where po(x) is a concave polynomial passing through the
vertices of P and which approximates P e-well.

e In particular, p;j(x) vanishes on the i-faces of P,
i=0,...,n—1.
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Example

e For a regular simplex P C R3 we can choose

/1(X):1—|-X1—X2—|-X3, /2(X):1—X1—|-X2—|-X3
B(x)=14+x1+x—x3, h(x)=1-x3—x2— x3.
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Example

e For a regular simplex P C R3 we can choose

/1(X):1—|-X1—X2—|-X3, /2(X):1—X1—|-X2—|-X3
B(x)=14+x1+x—x3, h(x)=1-x3—x2— x3.

pp=hhhkls
pr=hbh+hbl+hhkl+hhkl
=4(1—x2 —x3 —x2 —2x1x0%3)

2 2 2
p0:3_X1—X2—X3.
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e For JC {0,1,2} let Py = {x e R3: p;j(x) > 0,j € J}

< P ~
|

Pz P

~ pd
t t
- P ~
Py I P,
~ rd
PO.l




e For JC {0,1,2} let Py = {x e R3: p;j(x) > 0,j € J}

U

o P2
t i |
s “ .
O . 8
Py \ i _h




The general case

o Averkov&H., 2009.
If every n-polytope can be described by n polynomials then
also any unbounded n-dimensional polyhedron.
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The general case

e Averkov&H., 2009.
If every n-polytope can be described by n polynomials then
also any unbounded n-dimensional polyhedron.

For every 3-dimensional polyhedra we can construct 3
polynomials representing the polyhedra.
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Averkov& Brocker, 2010. Let
S={xeR":fi(x)>0,1<i<m}

be a basic closed semi-algebraic set.

e If all fi(x) are linear, i.e., S is a polyhedron, then S can be
represented by n polynomials.
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e Let d be the maximal number of polynomials vanishing at a
point. Then there exist d + 1 polynomials po, ..., pg
representing S.

Representing Polyhedra by Few Polynomials 24 /27



Averkov& Brocker, 2010. Let
S={xeR":fi(x)>0,1<i<m}

be a basic closed semi-algebraic set.
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Averkov& Brocker, 2010. Let
S={xeR":fi(x)>0,1<i<m}

be a basic closed semi-algebraic set.

e If all fi(x) are linear, i.e., S is a polyhedron, then S can be
represented by n polynomials.

e Let d be the maximal number of polynomials vanishing at a
point. Then there exist d + 1 polynomials po, ..., pg
representing S.

» If there are only finitely many points where d polynomials f;(x)
vanish then d polynomials suffice.

e The proofs are "semi-effective’”.
» Separation theorems based on Stone-Weierstrass

approximation.
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e How many polynomials are needed if we fix the degree?



e How many polynomials are needed if we fix the degree?

» H.&Matzke, 2007. Let P be a 2-polyhedron with m edges and

let k € N. Then one can construct d polynomials ¢, ..., gq of
degree at most k and with
m
d < | 7|+ llogalk— 1)) +1

such that
P={xeR?:qi(x)>0,1<i<d}
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e How many polynomials are needed if we fix the degree?

» H.&Matzke, 2007. Let P be a 2-polyhedron with m edges and
let k € N. Then one can construct d polynomials ¢, ..., gq of
degree at most k and with

d < [ 7] + Llogalk — 1)) + 1

such that

S ={zeR?: fola) fulx) >0 fa(x) - fslx) > 0. fi(z) >0}
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e How many polynomials are needed if we fix the degree?

» H.&Matzke, 2007. Let P be a 2-polyhedron with m edges and

let k € N. Then one can construct d polynomials ¢, ..., gq of
degree at most k and with
m
d < | 7|+ llogalk— 1)) +1

such that
P={xeR?:qi(x)>0,1<i<d}
» Best possible for k = O(m/ log, m).
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e How many polynomials are needed if we fix the degree?

» H.&Matzke, 2007. Let P be a 2-polyhedron with m edges and

let k € N. Then one can construct d polynomials ¢, ..., gq of
degree at most k and with
m
d < | 7|+ llogalk— 1)) +1

such that
P={xeR?:qi(x)>0,1<i<d}
» Best possible for k = O(m/ log, m).

e Averkov&Bey, 2010. d < max{%, |og2(m)}, and it is best
possible for any k among a certain family of polynomials.
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More Open Questions

e Can we bound the degree of the polynomials by purely
combinatorial data?
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Thank you for your attention!



