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Why?

• By a theorem of Bröcker, Scheiderer in real algebraic
geometry, every polyhedron in Rn can be described by a few�
≈ n2� polynomial inequalities.

• Martin Grötschel Impact for hard combinatorial optimization
problems?, Constructions?, Approximations by polynomial
inequalities?
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• Bröcker, Scheiderer, ’84,...,’89. Every basic closed
semi-algebraic set S ⊂ Rn can be represented by at most
n(n + 1)/2 polynomial inequalities, i.e., there exist
p1, . . . , pn(n+1)/2 ∈ R[x ] such that

S = {x ∈ Rn : p1(x) ≥ 0, . . . , pn(n+1)/2(x) ≥ 0}.

In the case of basic open semi-algebraic sets, n polynomials
suffice, and both bounds are best possible.
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• Open: For instance, the positive orthant
{x ∈ Rn : xi > 0, 1 ≤ i ≤ n} cannot be described by less than
n strict polynomial inequalities.

✻

✲

✠

• Closed: For instance, the family of stacked cubes cannot be
described by less than n(n + 1)/2 polynomial inequalities.

• Can the bound be improved, e.g., for convex sets?
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Consequences for polyhedra

• Every polyhedron

P = {x ∈ Rn : �ai , x� ≤ bi , 1 ≤ i ≤ m},

given as the intersection of finitely many linear inequalities, can
be described by at most n(n + 1)/2 polynomial inequalities.
The interior of a polyhedron can even be described by n
polynomials.

• Can the bound be improved?

Yes!

•• Can we (really) construct these (few) polynomials?
It depends...!
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(Trivial) Examples

•• The

Cn
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• The (regular) n-cube
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(Trivial) Examples

• The (regular) n-cube (or any other parallelepiped)

Cn = {x ∈ Rn : −1 ≤ xi ≤ 1, 1 ≤ i ≤ n}

= {x ∈ Rn : (xi )
2 ≤ 1, 1 ≤ i ≤ n}.
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(Trivial) Examples

• The n-simplex

Cn

Tn = {x ∈ Rn : xi ≥ 0, x1 + · · · + xn ≤ 1}
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(Trivial) Examples

• The n-simplex

Cn

Tn = {x ∈ Rn : xi ≥ 0, x1 + · · · + xn ≤ 1}

=
�

x ∈ Rn : xi (1−
�n

k=i xk) ≥ 0, 1 ≤ i ≤ n
�

.
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• The regular n-crosspolytope

C �
n =

�
x ∈ Rn :

�
|xi | ≤ 1

�

• Bosse, 2003, n = 3:

�
p1/2 = product of 4 facet defining in-

equalities which do not have an edge in

common.

� p0 = circumsphere of C�
3 .
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Grötschel&H., 2002.

• Each facet defining linear polynomial bi − �ai , x� is a factor of
one of the polynomials in a polynomial representation.

� Hence, the sum of the degrees in any polynomial representation

is at least the number of facets of the polyhedron.

• For every k-face there exist at least n − k polynomials in a
polynomial representation vanishing on aff F .

� Hence, a polynomial representation of a polyhedra having a

vertex consists of at least n polynomials.

• For prisms and pyramids a polynomial representation can be
constructed from a polynomial representation of the basis plus
one additional polynomial.

• For bi-pyramids?
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Dimension 2

• vom Hofe, 1992. For each polygon we can construct 3
polynomial inequalities representing the polygon.

• Bernig, 1998. For each (bounded) polygon we can construct 2
polynomial inequalities representing the polygon.
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• Let P = {x ∈ R2 : �ai , x� ≤ bi , 1 ≤ i ≤ m} be a polygon.

p1(x) = (b1 − �a1, x�) · (b2 − �a2, x�) · . . . · (bm − �am, x�)
p0(x) = concave polynomial through the vertices
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• p0(x) is of the form

p0(x) = 1−
m�

i=1

λi

�
�wi , x� − li

ui − li

�2k
,

where wi are normal vectors of support hyperplanes of the
vertices,

li = min
x∈P

�wi , x�, ui = max
x∈P

�wi , x�

and λi > 0 and k are chosen such that p0(x) vanishes on the
vertices.

• In particular, the degree depends on metric properties of the
polygon.
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• The obvious generalization of that 2-dimensional approach to
consider polynomials

pk(x) =
�

support hyperplanes of k-faces, k = 1, . . . , n − 1,

p0(x) = concave polynomial through the vertices

does not work for n ≥ 3 (see, e.g., crosspolytope).
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• Bosse&Grötschel&H., 2005. For every n-dimensional
polyhedron we can construct 2n polynomial inequalities
representing the polytope.

• Consequence: Let

S =
�

x ∈ Rn : f1(x) ≥ 0, . . . , fm(x) ≥ 0
�

with deg(fi ) ≤ d . Then we can find 2
�n+d

n
�
− 2 polynomials

representing the set S .
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Simple polytopes seem to be simpler

• Averkov&H., 2008. For every n-dimensional simple polytope
we can construct n polynomial inequalities representing the
polytope.

• Rough idea:
� Let li (x) = bi − �ai , x� and let

P = {x ∈ Rn : li (x) ≥ 0, 1 ≤ i ≤ m}.

� Let

σj(x) =
�

J⊆{1,...,m}
#J=j

�

k∈J

lk(x)

be the j-th elementary symmetric polynomial of

l1(x), . . . , lm(x).
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� P = {x ∈ Rn : σi (x) ≥ 0, 1 ≤ i ≤ m}
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I Let x ∈ Rn such that σi (x) ≥ 0, 1 ≤ i ≤ m. Let

f (t) =
m�

i=1

(li (x) + t) =
m�

i=0

σi (x) tm−i .

All coefficients are non-negative and hence, the roots −li (x),
1 ≤ i ≤ m, are non-positive, i.e., x ∈ P .
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� P = {x ∈ Rn : σi (x) ≥ 0, 1 ≤ i ≤ m}.

If P is simple then there exists an � > 0 such that for

x ∈ P + � Bn
σi (x) ≥ 0, 1 ≤ i ≤ m − n.
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�II Let x ∈ P . Since P is simple, there exist at most n linear
forms li (x) vanishing at x .

• Hence at least m − n linear forms are positive at x and so

σj(x) > 0, j ≤ m − n.

• Thus by continuity we can find an � > 0 such that for all
x ∈ P + �Bn

σj(x) ≥ 0, j ≤ m − n.
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� P = {x ∈ Rn : σi (x) ≥ 0, 1 ≤ i ≤ m}
� If P is simple then there exists an � > 0 such that for

x ∈ P + � Bn
σi (x) ≥ 0, 1 ≤ i ≤ m − n.

� Thus

P = {x ∈ Rn : σm−n+i+1(x) ≥ 0, 0 ≤ i ≤ n − 1, p�(x) ≥ 0} ,

where {x ∈ Rn : p�(x) ≥ 0} is a ”good” approximation of P.
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• A simple polytope P = {x ∈ Rn : li (x) ≥ 0, 1 ≤ i ≤ m} is
described by the n polynomial inequalities

pi (x) := σm−n+i+1(x) ≥ 0, 1 ≤ i ≤ n − 1, p0(x) ≥ 0,

where p0(x) is a concave polynomial passing through the
vertices of P and which approximates P �-well.

• In particular, pi (x) vanishes on the i-faces of P ,
i = 0, . . . , n − 1.
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Example

• For a regular simplex P ⊆ R3 we can choose

l1(x) = 1 + x1 − x2 + x3, l2(x) = 1− x1 + x2 + x3

l3(x) = 1 + x1 + x2 − x3, l4(x) = 1− x1 − x2 − x3.

•

p2 = l1 l2 l3 l4
p1 = l1 l2 l3 + l1 l2 l4 + l1 l3 l4 + l2 l3 l4

= 4 (1− x2
1 − x2

2 − x2
3 − 2 x1 x2 x3)

p0 = 3− x2
1 − x2

2 − x2
3 .
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• For J ⊂ {0, 1, 2} let PJ = {x ∈ R3 : pj(x) ≥ 0, j ∈ J}

P

P0 P1

P2

P0,2 P1,2

P0,1

Simplex
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• For J ⊂ {0, 1, 2} let PJ = {x ∈ R3 : pj(x) ≥ 0, j ∈ J}

P

P0 P1

P2

P0,2 P1,2

P0,1

Cube
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The general case

• Averkov&H., 2009.
If every n-polytope can be described by n polynomials then
also any unbounded n-dimensional polyhedron.

For every 3-dimensional polyhedra we can construct 3
polynomials representing the polyhedra.
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Averkov&Bröcker, 2010. Let

S = {x ∈ Rn : fi (x) ≥ 0, 1 ≤ i ≤ m}

be a basic closed semi-algebraic set.

• If all fi (x) are linear, i.e., S is a polyhedron, then S can be
represented by n polynomials.

• Let d be the maximal number of polynomials vanishing at a
point. Then there exist d + 1 polynomials p0, . . . , pd
representing S .

� If there are only finitely many points where d polynomials fi (x)
vanish then d polynomials suffice.

• The proofs are ”semi-effective”.
� Separation theorems based on Stone-Weierstrass

approximation.
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• How many polynomials are needed if we fix the degree?

� H.&Matzke, 2007. Let P be a 2-polyhedron with m edges and

let k ∈ N. Then one can construct d polynomials q1, . . . , qd of

degree at most k and with

d ≤
�
m

k

�
+ �log2(k − 1)�+ 1

such that

P = {x ∈ R2 : qi (x) ≥ 0, 1 ≤ i ≤ d}.
� Best possible for k = O(m/ log2 m).

• Averkov&Bey, 2010. d ≤ max
�m

k , log2(m)
�
, and it is best
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Einleitung
Ergebnisse

Ausblick

beschränkte Polyeder
unbeschränkte Polyeder

v1

v2

f1

v5

v3v4

f3

f4

f2

f5

S

S = {x ∈ R2 : f2(x) · f4(x) ≥ 0, f3(x) · f5(x) ≥ 0, f1(x) ≥ 0}

Bettina Matzke Darstellung von Polyedern im R2
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More Open Questions

• Can we bound the degree of the polynomials by purely
combinatorial data?

• Is it reasonable to take the product of the facet defining
inequalities?

•
...
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Thank you for your attention!
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