Spectrahedra and their Projections

Tim Netzer

Universitat Leipzig, Germany

Convex Algebraic Geometry
Banff International Research Station
February 14-19, 2010



Introduction



Introduction: Convex Optimization



A convex optimization problem is the following:



A convex optimization problem is the following:
Given a convex set
SCR”
and an (affine) linear function

/:R" =R



A convex optimization problem is the following:
Given a convex set
SCR”
and an (affine) linear function
:R" - R

find the infimum/supremum that ¢ takes on S, and possibly a set of
points where an optimum is attained.



Question:
How can one compute the solutions to such a problem?



Question:
How can one compute the solutions to such a problem?

Answer:
For certain kinds of sets, there exist numerical algorithms!



Question:
How can one compute the solutions to such a problem?

Answer:
For certain kinds of sets, there exist (efficient) numerical algorithms!



Question:
How can one compute the solutions to such a problem?

Answer:
For certain kinds of sets, there exist (efficient) numerical algorithms!

Such sets are:



Question:
How can one compute the solutions to such a problem?

Answer:
For certain kinds of sets, there exist (efficient) numerical algorithms!

Such sets are:

» Polyhedra (sets defined by finitely many linear inequalities)



Question:
How can one compute the solutions to such a problem?

Answer:
For certain kinds of sets, there exist (efficient) numerical algorithms!

Such sets are:

» Polyhedra (sets defined by finitely many linear inequalities)

» Spectrahedra (sets defined by linear matrix inequalities)



Question:
How can one compute the solutions to such a problem?

Answer:

For certain kinds of sets, there exist (efficient) numerical algorithms!

Such sets are:

» Polyhedra (sets defined by finitely many linear inequalities)
» Spectrahedra (sets defined by linear matrix inequalities)

» Projections of spectrahedra



Question:
How can one compute the solutions to such a problem?

Answer:
For certain kinds of sets, there exist (efficient) numerical algorithms!

Such sets are:

» Polyhedra (sets defined by finitely many linear inequalities)
> Spectrahedra (sets defined by linear matrix inequalities)
» Projections of spectrahedra

My talk will be about these kinds of sets.
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a linear matrix polynomial

Then

S :={x € R" | A(x) is positive semidefinite}

is called a spectrahedron.



Let Ao, ..., A, € Sym,(R) be real symmetric matrices. For x € R”
write

Ax)= Ao+ x1A1+ -+ XA,

a linear matrix polynomial

Then

S={xeR"| A+ x1A1 + - xpA, = 0}

a linear matrix inequality

is called a spectrahedron.
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Examples:

» If all matrices A; are diagonal, then for all x € R”
A(x) = Ao + x1A1 + - + XA,

is a diagonal matrix.
= S is just a polyhedron.

» Take

Then

A(x) = Ap + x1A1 + x0Ar = ( I+tx 2 >

X2 1—X1

if and only if x? + x2 < 1.



Examples:

» If all matrices A; are diagonal, then for all x € R”
A(x) = Ao + x1A1 + - - + xaAn

is a diagonal matrix.
= S is just a polyhedron.

» A spectrahedron:

X1
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Properties of spectrahedra/necessary conditions:

» Spectrahedra are convex:

A + (1= A)y) = M(x) + (1 — MA().

» Spectrahedra are basic closed semi-algebraic, i.e. defined by
finitely many simultaneous polynomial inequalities:

S={x€R" | pi(x) 2 0,..., pm(x) = O},

where the p;j(x) are for example the principal minors of A(x).

» Spectrahedra have only exposed faces.
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» Spectrahedra are rigidly convex:
Assume without loss of generality

A(X) =+ XlAl + - 'XnAn.

Then
p(x) = det(A(x)) € R[x]

has the following properties:

p(0) >0
if p(A-x) =0 for some x € R", then )\ € R.

This follows from the fact that real symmetric matrices have only
real Eigenvalues.
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The ellipsoid around zero defined by such a zero set is called a rigidly
convex set:

X1

Theorem (Helton & Vinnikov, 2006)

Every spectrahedron is rigidly convex. Every rigidly convex set in R? is
a spectrahedron.

This solves the Lax-Conjecture, as observed by Lewis, Parrilo &
Ramana.
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2. Example: p=1— x{ — x5 is not an RZ polynomial.
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L: R™ — R" a linear map
SCR™a spectrahedron

S = L(S) an sdr set
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After some turning, shifting and scaling we can assume that L is a
projection:
L:R"xR™ - R" (x,y)+— x.
Then S takes the following form:
S={xeR" |3y eR" A(x,y) = 0},
where
Ax,y) = Ao+ x1A1+ -+ XpAn+ y1Bl+ -+ + ypBnm

is a linear matrix polynomial.
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S={0a, %) €R?[3n,y2: X{ <y, X5 <y, yi +y5 <1}



» S={(x1,x) eR? | x{ +x3 <1}:

X
S= {(X17X2) ER? | 3y, < ﬁ 11 > = 0,55 <y, Yi+yi< 1}



» S={(x1,x) eR? | x{ +x3 <1}:

5: {(X17X2) €R2 ’ Ely]_,y2: < ! );-1 > EO’ ( Y2 );-2 > EO,

X1 X2

vi+ys <1}



> S={(x1,x) eR? | x{ +x3 <1}:

S={(x,x) €R*| Iy, y : ( 2 1

( 1+w
Y2

Y2
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)=



> S={(x1,x) ER? | x{ +x3 <1}:

yi xx 0 O 0 0
xx 1 0 0 0 0
0 0 Yo X2 0 0
_ 2 .
S={(x1,x) €R" | Iy1,y>: 0 0 x 1 0 0
0 0 0 0 14w 2
0 0 0 O ¥o 1—-n
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Which sets are sdr?

Properties of sdr sets/necessary conditions:
> Sdr sets are convex.

» Sdr sets are semi-algebraic, i.e. finite boolean combinations of sets
of the form

{x € R" | p(x) > 0}, where p € R[x].

This follows from quantifier elimination in the theory of real
closed fields.

» No other necessary conditions are known! In particular, sdr sets
are not closed or even basic closed semi-algebraic in general. They
can also have non-exposed faces.



Question/Conjecture (Nemirovski, Helton & Nie):

Is every convex semi-algebraic set semidefinitely representable?



Constructions



Constructions |: A First List



» Intersections, Minkowski sums and direct products of sdr sets are
sdr.



» Intersections, Minkowski sums and direct products of sdr sets are
sdr.

» Faces of sdr sets are sdr.



» Intersections, Minkowski sums and direct products of sdr sets are
sdr.

» Faces of sdr sets are sdr.

» Duals and polars of sdr sets are sdr.



» Intersections, Minkowski sums and direct products of sdr sets are
sdr.

» Faces of sdr sets are sdr.
» Duals and polars of sdr sets are sdr.

» The closure of an sdr set is sdr.



v

vV v. v Y

Intersections, Minkowski sums and direct products of sdr sets are
sdr.

Faces of sdr sets are sdr.
Duals and polars of sdr sets are sdr.
The closure of an sdr set is sdr.

The conic hull of an sdr set is sdr.



vV v . v v .Y

Intersections, Minkowski sums and direct products of sdr sets are
sdr.

Faces of sdr sets are sdr.

Duals and polars of sdr sets are sdr.
The closure of an sdr set is sdr.
The conic hull of an sdr set is sdr.

The convex hull of a finite union of sdr sets is sdr.
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Let
Rlx]x = {p € Rx] | deg(p) < 1}

denote the space of affine linear polynomials in n variables.
This is a finite dimensional space. So assume that
M C R[x];
is an sdr set. Now consider
S={xeR"|{x)>0forall £ € M}.

S is the intersection of the dual cone of M with a hyperplane, and thus
an sdr set.
This observation gives us a method to construct sdr sets!
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Sdr sets in R[x];:
For p1,...,pm € R[x] and d € N define

QM(p)g = {00+ 01p1+ -+ + Ompm | 0 € S R[x]?, deg(0;) < 2d}.

» Each QM(p)y lives in a finite dimensional subspace of R[x]
» Each QM(p)y is semidefinitely representable:

QM(p)g is the image of some RN under a quadratic map,

parametrizing the coefficients of the o;.

Ramana and Goldman (1995) have proven that such sets are sdr.
> So L(p)g := QM(p)g NR[x]1 is a semidefinitely representable

subset of R[x];.
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Recall:

L(p)d = {€ S R[X]l | ¢ =0g+o1p1+ -+ OmPm
with o; € ZR[X]2,deg(0,~) < 2d}.

Thus
S(p)g ={x€R"| 4(x) >0forall £ € L(p)g}

is semidefinitely representable.

Theorem (Lasserre, 2009)
Let S={x € R"| pi(x) >0,...,pm(x) > 0}. Then
conv(S) C S(p)g+1 € S(p)y for all d € N.

If there is some d € N such that every ¢ € R[x|; that is nonnegative on
S belongs to QM(p)y then conv(S) is semidefinitely representable.
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Example: S = {(x1,x2) € R? | x{ + x5 <1} :

Let a € [-1,1] and (a, v/1 — a*) be the corresponding point on the
boundary of S. A linear polynomial nonnegative on S and zero at this
point is a positive multiple of

fa =1- a3x1 — (\4/ 1-— 34)3X2.

One checks that ¢, — (1 — x{ — x3) is globally nonnegative, and thus a
sums of squares, since it has degree four and only two variables.
So £, € QM(1 — x§ — x3)2, and S is thus sdr.



Interlude: An Interesting Quadratic Module



Recall:

S={xeR"|pi(x) >0,...,pm(x) > 0},



Recall:

S={xeR"|pi(x) >0,...,pm(x) > 0},

QM(p)g = {00+ 01p1 + - + Ompm | i € Y R[x]?, deg(0) < 2d} .



Recall:

S={xeR"|pi(x) >0,...,pm(x) > 0},
QM(p)g = {00+ 01p1 + - + Ompm | i € Y R[x]?, deg(0) < 2d} .

We have seen:



Recall:

S={x€R"| pi(x) > 0,..., pm(x) > O},
QM(p)g = {o0+o1p1+ -+ + Ompm | 0 € 3 R[x]?, deg(07) < 2d}.
We have seen:

If S is convex and QM(p)y contains every linear polynomial that is
nonnegative on S, then S is sdr.



Recall:

S={x€R"| pi(x) > 0,..., pm(x) > O},
QM(p)g = {o0+o1p1+ -+ + Ompm | 0 € 3 R[x]?, deg(07) < 2d}.
We have seen:

If S is convex and QM(p)y contains every linear polynomial that is
nonnegative on S, then S is sdr.

What about the converse?



Recall:

S={x€R"| pi(x) > 0,..., pm(x) > O},
QM(p)a = {00 + 1Pt + -+ + Ompm | 07 € S R[x]?, deg(o7) < 2d} .
We have seen:

If S is convex and QM(p)y contains every linear polynomial that is
nonnegative on S, then S is sdr.

What about the converse?

It is not true in general (see D. Plaumanns talk).



Recall:

S={x€R"| pi(x) > 0,..., pm(x) > O},
QM(p)a = {00 + 1Pt + -+ + Ompm | 07 € S R[x]?, deg(o7) < 2d} .
We have seen:
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S={xeR"|3Jy: Ap+x1A1+ -+ xA,+y1B1+ -+ ymBm = 0},
with k x k symmetric matrices A;, B;. Write

A(x) = Ao+ x1A1 + - - + X,An.

Now let gU) = (qi’j), ol q,((j)) be k-tuples of polynomials, i.e.
qu) € R[x]. The polynomial

> aDA(x)g!)" € R[x]
is nonnegativ on S, as long as ZJ- qVBiqV)" =0 foralli=1,...,m.

So let QM(A) be the quadratic module generated by these polynomials.
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Formally:

QM(A) = > qDA(x) Y + o | ¢V e R[x]*,D " W B;g"" =0 for all i
- .

o€ R[x?}

Properties of QM(A):
» QM(A) contains only polynomials that are nonnegative on S.
» S={xeR"|p(x) >0 forall pc QM(A)}.

» So QM(A) is not finitely generated in general (but also not too
"wild").
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» Whenever some linear polynomial ¢ is nonnegative on S, then

(= Z gDA(x) gV + o,

J
with gU) € Rk,zj gV BigV" =0 foralli,o e R>o.

So QM(A) contains every nonnegative linear polynomial with
"degree bound" 0!

» Whenever S is bounded, then QM(A) is Archimedean, and thus
contains every polynomial p with p > ¢ on S for some ¢ > 0.
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The corresponding spectrahedron in R3 is defined by the linear matrix
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Example: S ={(x1,%) €R? |y € [-1,1]: (xa —y)® + x5 <1}:

So every polynomial that is strictly positive on S is a sum of squares
plus a polynomial of the following form:

N2 N2 N2 N2 N2 N2 N2 N2
Yo+ + a4 0 +x(ad — )+ x0(a - ),
j

where qu) € R[x, xo] with 3, 2q§j)q§j) - qg)z - q£1)2 =0.
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Using the above constructions and the result about convex hulls,
Helton & Nie (2009/2010) prove several results.

Again let
S={xeR"|pi(x) = 0,....pm(x) = 0}

be basic closed semialgebraic. Further assume that S is compact,
convex and has nonempty interior.

Theorem (Helton & Nie)

If for each p;, the negative Hessian matrix is either a sum of squares of
polynomial matrices, or positive definite on the tangent space of p; at
each point of S, then S is semidefinitely representable.
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Examples:
> S={(x1,%) €ER? | x} + x5 <1}:

For the Hessian of p = 1 — x} — x5 we find

_y 2 p= \/ﬁxl 0 ‘ \/ﬁxl 0
0 V12 0 V125

= S is sdr.
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> S={(x1,%) ER? |1 <x1 <2,x0 < 1,1 <x2x}:

The negative Hessian of p = x12x2 —1lis

2x>  2x
25— _ 2 1
vep < 2x7 0 > ’
which is not a sum of squares of matrices.

But for every point (a, 3—12) with a > 0, the tangent space is spanned by
(—a2, %) We have

2 2
-5 —2a —a
(—a2,2) ( _52 0 > ( 2 > =6a> > 0.

So S is sdr.
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Again using the Lasserre-Parrilo method, one can prove results on
convex hulls of curves:

Theorem (Parrilo)

Let S C R" be a semi-algebraic subset of a rational curve. Then
conv(S) is semidefinitely representable.

Theorem
Let S C R" be the rational image of a smooth elliptic curve with at

least one non-real point at infinity. Then conv(S) is semidefinitely
representable.

Both results use representations of nonnegative polynomials as sums of
squares, together with degree bounds (Kuhlmann, Marshall &
Schwartz; Scheiderer).
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Examples:

» S={(x1,x) ER?| -1<x1,0< x < 1,X13§x2}:

S is bounded by segments of rational curves, and thus
semidefinitely representable.
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PS:
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infinity, and thus sdr.
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{(x1,%) ER? | x3 <1—x{}:

PS:

S is bounded by a smooth elliptic curve with a non-real point at

infinity, and thus sdr.

— (x1, x1x0):

)

X1, X2

» Apply the polynomial map (

Then take the convex hull. The set is semidefinitely representable.
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Theorem
Suppose T C S are both semidefinitely representable sets. Then

TS

is again semidefinitely representable.

Corollary
The relative interior of an sdr set is sdr.

Proof.
Take x € relint(S). Then relint(S) = {x} <P S.
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Non-Closed Sets: Sketch of Proof
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Lemma

Let A € Sym,(R) and B € R™*k_ Let I, denote the identity matrix of
dimension m. Then the following are equivalent:

. . Al Bt
(i) there is some A\ € R such that DY) =0

(i) A= 0 and ker A C ker B
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Proof of the Theorem.
First assume that S is a spectrahedron. Let A(x) be a k-dimensional
symmetric linear matrix polynomial defining S. For z € T we have

| relint(F) = {x € R" | A(x) = 0, ker A(x) C ker A(z)} .
zeF

So
(T pS)= {xGR”|EIz€TEI)\ <A(X) A('z))to},

which is a semidefinite representation.
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Theorem
Suppose T C S are both semidefinitely representable sets. Then

TS

is again semidefinitely representable.

Proof of the Theorem.
The case when S is sdr but not a spectrahedron can then be reduced to

the above case. O

Note: The proof gives an explicit construction of a spectrahedron
projecting to T «P S. One can for example see that rational
coefficients in the representations of T and S are preserved.
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> Let vy: R” — RN be the Veronese embedding, i.e.

X = (X)) <d -

What about conv(r4(R")) or conv(r4([0,1]"))? Are these sets
sdr?

Reason: Convex hulls of images of arbitrary polynomial mappings
can be reduced to this case.

» What about the complexity of semidefinite representations? How
many additional variables are needed?



Future Work/Open Problems

For example:



For example:
Can anyone prove that the set S = {(x1,x) € R? | x{ + x3 < 1} is not
the projection of a spectrahedron from R3?




Thank you for your attention!



