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Spectrahedra

Ag,..., A, € Symk(]R),A([) =Ag+HA + - +1,A,
S={xeR"| A(x)is psd}

m Sisconvex

m Sis basic closed semi-algebraic, i.e. described by simultaneous
(non-strict) polynomial inequalities:
Take the characteristic polynomial

det(A(t) = sk) = (-D)F's* + g () + -+ (1)
with ¢; € R[¢], then

S={xeR"[co(x) > 0,~c1(x) 20,..., (1) "y (x) > 0}
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Projections of spectrahedra

A(), A ,Am € Symk(]R),A([) = AO + tlAl + -+ thm
S= {x eR™ | A(x)is psd}

Let 7: R™ — R" be a linear map. The image 7(S) is a projection of a
spectrahedron. If m = n +  and 7: R"*! - R”" the projection onto the
first n coordinates, then

n(S) = {x eR"|3y e Rl:AO+x1A1+---+ann+y1An+1+---+ylAm is psd}.

Projections of spectrahedra are also called semidefinitely
representable sets or SDP (representable) sets.
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The Lasserre relaxation

LetC={xeR"|pi(x) >0,...,p,(x) > 0} be a basic closed
semi-algebraic set. Always assume C convex with non-empty
interior.

Goal: Approximate C by the projection of a spectrahedron.

Put pp =1and let

M- {z<sﬁ+---+s%N>pi\s,-j eRm}
i=0

be the quadratic module generated by py, . . ., p,. Write R[¢], for the
space of polynomials of degree at most d. For d > 1, let

.
M, = {Z(sf1 + o+ sy )pi | (si + -+ + sty )pi € R[¢] 4 for all i}.
=0

Note: My ¢ M nR[t]; in general.
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Fact: The set L, is a spectrahedron in R[¢],.

Let mR[t]; - R" be given by L = (L(t),...,L(t,)) and write
Cd = 7'[([,‘;). Then
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The Lasserre relaxation

C={xeR"|pi(x) 20,...,p(x) > 0} convex with non-empty interior.
M= {Z;=0(5?1 + e +5?N)Pi |5ij € R[ﬂ}

Mg = {0 (si+ - +si)pi | (sh + - +siy)pi € R[t]a forall i}
Lq={LeR[t]y|L(f) > 0forallf e Mgand L(1) =1}

mLy—>R", L (L(f,...,L(ta))

Cd = 71'([,,1)

Say that the Lasserre relaxation of degree d is exact if C = Cj.



The Lasserre relaxation

C={xeR"|pi(x) 20,..., pr(x) > 0} convex with non-empty interior.
M= {Z;=0(5?1 + e +5?N)Pi |5ij € R[ﬂ}

Mg = {0 (si+ - +si)pi | (sh + - +siy)pi € R[t]a forall i}
Lq={LeR[t]y|L(f) > 0forallf e Mgand L(1) =1}

mLy—R", L~ (L(#,..., L(t,))

Cd = 71'([,,1)

Say that the Lasserre relaxation of degree d is exact if C = Cj.

Theorem
The Lasserre relaxtion of degree d of C is exact if and only if M4
contains all ¢ € R[] of degree 1 such that £|¢ > 0.
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Exposed faces

Let C be a convex subset of R”. A face of Cis a convex subset F of C
which is extremal, i.e. whenever x, y € C are such that %(x +y)€eF,
thenx,y e F.

A face is called exposed if F = & or if there exists a supporting
hyperplane H of C such that F = H n C. (Equivalently: If there exists
¢ € R[t] of degree 1suchthat¢|c > 0and F= Cn {x e R" | ¢(x) = 0}.
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Theorem
If C possesses an exact Lasserre relaxation, then all faces of C are
exposed.

Note: The condition on Cis independent of py, ..., p;.

But if C has a non-exposed face, there may still exist qi, . . ., gs such
that

C=conv({xeR" | gqi(x) 20,...,gs(x) > 0}).

and such that C has a an exact Lasserre relaxation w.rt. g, . . . , gs.
(Example of such C by Gouveia (2009)).
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and C,, C; is a spectrahedron, and the third
Lasserre relaxation of C, is exact:




Examples

C={xeR"|pi(x) 20,...,p(x) > 0} convex with non-empty interior.
M= {Z;:o(sle + e +3?N)Pi |5ij € R[E]}
Mg = {0 o(si+ - +si)pi | (sh + - +siy)pi € R[t]a forall i}

Example:py=t;, pa=1-t, ps=t+1, pyi=t—£.

t2 But it follows from a result of Helton and Nie
that C is the projection of a spectrahedron:
Let Gy = [-1,0] x [0,1]and C; = {p; 2 0,p, >
N/ B 0,py > 0,4 > 0}. Sis the convex hull of C;

and C,, C; is a spectrahedron, and the third
Lasserre relaxation of C, is exact:

Forany ¢ € [0,1], we can write £, = £} — 3e’t; + 2> + (t, — £}). The
polynomial £ — 3e%t; + 2¢* € R[#] is non-negative on [0, o) and is
therefore contained in QM(#); € R[#] by a result of Kuhlmann,
Marshall, and Schwartz.




