
The Convex Hull of a Space Curve

Kristian Ranestad

15. February 2010

Kristian Ranestad The Convex Hull of a Space Curve



Reference

-, Bernd Sturmfels: On the convex hull of a space curve,
math.AG/0912.2986

Kristian Ranestad The Convex Hull of a Space Curve



Consider the trigonometric space curve defined
parametrically by

x = cos(θ) , y = sin(2θ) , z = cos(3θ). (0.1)

This is an algebraic curve of degree 6 cut out by intersecting
two surfaces of degree 2 and 3:

x2
− y 2

− xz = z − 4x3 + 3x = 0. (0.2)
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The convex hull of the curve (cos(θ), sin(2θ), cos(3θ)) has two
triangles and two non-linear surfaces patches of degree 3 and
16 in its boundary.
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The convex hull of our curve is the following projection of a
6-dimensional spectrahedron:
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Here “� 0” means that this Hermitian 4×4-matrix is positive
semidefinite.
The boundary surface of the convex hull is not easily derived
from this representation.
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The yellow surface has degree 3 and is defined by

z − 4x3 + 3x = 0. (0.3)

The green surface has degree 16 and its defining polynomial is
....

1024x16 − 12032x14y2 + 52240x12y4 − 96960x10y6 + 56160x8y8 + 19008x6y10 + 1296x4y12 + 6144x15z − 14080x13

−72000x11y4z + 149440x9y6z + 79680x7y8z + 7488x5y10z + 15360x14 z2 + 36352x12y2z2 + 151392x10y4z2 + 131264x

+18016x6y8z2 + 20480x13z3 + 73216x11y2z3 + 105664x9y4z3 + 23104x7y6z3 + 15360x12z4 + 41216x10y2z4 + 16656

+6144x11z5 + 6400x9y2z5 + 1024x10 z6 − 26048x14 − 135688x12y2 + 178752x10y4 + 124736x8y6 − 210368x6y8 + 792

+5184x2y12 + 432y14 − 77888x13 z + 292400x11y2z + 10688x9y4z − 492608x7y6z − 67680x5y8z + 21456x3y10z + 2592

−81600x12z2 − 65912x10y2z2 − 464256x8y4z2 − 192832x6y6z2 + 31488x4y8z2 + 6552x2y10z2 − 40768x11z3 − 194400

−196224x7y4z3 + 14912x5y6z3 + 8992x3y8z3 − 20800x10z4 − 84088x8y2z4 − 7360x6y4z4 + 7168x4y6z4 − 12480x

−9680x7y2z5 + 3264x5y4z5 − 2624x8z6 + 760x6y2z6 + 64x7z7 + 189649x12 + 104700x10y2 − 568266x8y4 + 268820

+118497x4y8 − 42984x2y10 − 432y12 + 62344x11 z − 592996x9y2z + 421980x7y4z + 377780x5y6z − 79748x3y8z − 18288

+104620x10 z2 + 56876x8y2z2 + 480890x6y4z2 − 12440x4y6z2 − 51354x2y8z2 − 936y10 z2 + 35096x9z3 + 181132x7

+73800x5y4z3 − 52792x3y6z3 − 3780xy8 z3 − 6730x8z4 + 52596x6y2z4 − 19062x4y4z4 − 5884x2y6z4 + y8z4 + 6008

+2516x5y2z5 − 4324x3y4z5 + 4xy6z5 + 2380x6z6 − 1436x4y2z6 + 6x2y4z6 − 152x5z7 + 4x3y2z7 + x4z8 − 305250

+313020x8y2 + 174078x6y4 − 291720x4y6 + 74880x2y8 + 84400x9z + 278676x7y2z − 420468x5y4z + 20576x3y6z + 40704

−25880x8 z2 − 76516x6y2z2 − 148254x4y4z2 + 77840x2y6z2 + 5248y8z2 − 29808x7 z3 − 49388x5y2z3 + 23080x3y

+14560xy6 z3 + 14420x6 z4 − 7852x4y2z4 + 9954x2y4z4 + 568y6 z4 + 848x5z5 + 92x3y2z5 + 1164xy4 z5 − 984x4z6 + 724

−2y4z6 + 112x3z7 − 4xy2z7 − 2x2z8 + 140625x8 − 270000x6y2 + 172800x4y4 − 36864x2y6 − 75000x7z + 36000x

+46080x3y4z − 24576xy6 z − 12500x6z2 + 49200x4y2z2 − 19968x2y4z2 − 4096y6 z2 + 15000x5z3 − 10560x3y2z

−3072xy4 z3 − 2250x4z4 − 1872x2y2z4 + 768y4 z4 − 520x3z5 + 672xy2 z5 + 204x2z6 − 48y2z6 − 24xz7 + z8
.
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We define the edge surface of C to be the union of all
stationary bisecant lines.

In our example the polynomials of degree 2, 3 and 16 define
the edge surface of C .

The quadric cone x2 − y 2 − xz = 0 is a component of the
edge surface that does not contribute to the boundary of the
convex hull.
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The algebraic (Zariski closure of the) boundary of the convex
hull of C consists of components of the edge surface and
tritangent planes.

Problems
1. How many components of the edge surface and how many

tritangent planes are real?

2. How many components of the edge surface and how many

tritangent planes contribute to the boundary?
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Theorem
Let C be a general smooth compact curve of degree d and

genus g in R3. The algebraic boundary of its convex hull is

the union of the edge surface and tritangent planes. The edge

surface is irreducible of degree 2(d − 3)(d + g − 1), and the

number of complex tritangent planes is

8
(

d+g−1
3

)

− 8(d+g−4)(d+2g−2) + 8g − 8.
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For a general smooth rational sextic curve, the number of
complex tritangent planes is 8.

Morton’s curve, 1
2−sin(2θ)

(

cos(3θ), sin(3θ), cos(2θ)
)

has no real
tritangent planes.
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Consider irreducible quartic space curves. Of course, they have
no tritangent planes.
If a quartic curve is smooth, it is rational or elliptic. If it is
singular, then it is rational and has one singular point.
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The edge surface of a smooth rational quartic curve is
irreducible of degree six.
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An elliptic quartic curve is the intersection of a pencil of
quadric surfaces. The pencil contains exactly four cones, each
with a vertex outside the curve.
The edge surface is the union of these four quadric cones.
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A singular (rational) quartic curve has a node or a cusp. It is
also the intersection of a pencil of quadric surfaces.

In the nodal case the pencil contains three cones. One has a
vertex at the node, the union of the other two form the edge
surface.

In the cuspidal case, the pencil contains two cones. Their
union form the edge surface.
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The edge surface for both a nodal and a cuspidal rational
quartic curve is the union of two quadric cones.
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Proposition
The variety dual to the edge surface of any space curve is a

curve.

In particular, each component of the edge surface is either a

cone or the tangent developable of a curve.

A cone is a component of the edge surface if and only if it is a

cone of secants with vertex at a cusp, or the general ruling

intersects the curve twice outside the vertex.
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Problem
Does the edge surface of a smooth space curve have at most

one component that is not a cone?
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Theorem
The edge surface of a general irreducible space curve of degree

d, geometric genus g , with n ordinary nodes and k ordinary

cusps, has degree 2(d−3)(d+g−1) − 2n − 2k.

The cone of bisecants through each cusp has degree d−2 and

is a component of the surface.
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Proofs. Consider the curve of stationary bisecants as a curve
B in the symmetric product S2C . This product has a natural
map into the Grassmannian of lines. Classical formulas of
Hurwitz and De Jonquiere are used to find the class of B and
to compute its degree as a curve in the Grassmannian.
The number of tritangent planes is computed by De
Jonquieres formula.
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If C is rational, then S2C = P2 and the curve B of stationary
bitangents is a plane curve.
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Trigonometric polynomials f1(θ), f2(θ), f3(θ) define a rational
space curve

C =
{ (

f1(θ), f2(θ), f3(θ)
)

∈ R
3 : θ ∈ [0, 2π]

}

(0.6)

Substituting

cos(θ) =
x2
0 − x2

1

x2
0 + x2

1

and sin(θ) =
2x0x1

x2
0 + x2

1

(0.7)

we get rational functions with common denominator
g(x0, x1) = (x2

0 + x2
1 )d , for some d .
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Multiplying by g we get a parametrized curve in complex
projective space

C̄ =
{

(F0(x) : F1(x) : F2(x) : F3(x))
= (g : gf1 : gf2 : gf3) ∈ CP

3 : (x0 : x1) ∈ CP
1
}

.

Given points p, q ∈ C̄ , represented by xp = (xp0 : xp1) and
xq = (xq0 : xq1) in CP

1.

(

F0(xp) F1(xp) F2(xp) F3(xp)
F0(xq) F1(xq) F2(xq) F3(xq)

)

.

defines the secant line to C̄ through p and q.
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The tangent line at p is defined by the partial derivatives

(

∂

∂xp0
F0(xp)

∂

∂xp0
F1(xp)

∂

∂xp0
F2(xp)

∂

∂xp0
F3(xp)

∂

∂xp1
F0(xp)

∂

∂xp1
F1(xp)

∂

∂xp1
F2(xp)

∂

∂xp1
F3(xp)

)

.

The secant line between the points p and q is stationary if the
determinant of the matrix














∂

∂xp0
F0(xp)

∂

∂xp0
F1(xp)

∂

∂xp0
F2(xp)

∂

∂xp0
F3(xp)

∂

∂xp1
F0(xp)

∂

∂xp1
F1(xp)

∂

∂xp1
F2(xp)

∂

∂xp1
F3(xp)

∂

∂xq0
F0(xq)

∂

∂xq0
F1(xq)

∂

∂xq0
F2(xq)

∂

∂xq0
F3(xq)

∂

∂xq1
F0(xq)

∂

∂xq1
F1(xq)

∂

∂xq1
F2(xq)

∂

∂xq1
F3(xq)















(0.8)

vanishes.
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The factor xp0xq1 − xp1xq0 appears with multiplicity 4 in the
determinant. Removing this factor we write the resulting
expression as a polynomial Φ(a, b, c) in the symmetric
polynomials

a = xp0xq0 , b = xp1xq1 , c = xp0xq1 + xp1xq0. (0.9)

Φ(a, b, c) defines the curve of stationary bisecant lines.
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In our first example this polynomial is

Φ = (a − b) c (3a4
− 6a2b2 + 2a2c2 + 3b4 + 2b2c2

− c4).
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