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Jim Renegar



@ p:RY - R homogeneous polynomial of degree
@ ple)>0

Defn: The polynomial p is
“hyperbolic in direction e”
if for all x € RY, the univariate polynomial

A — p(Ae — x) has only real roots.

Roots: A\ a(Xx) < Ape(X) < - < Ape(X)

“eigenvalues of x (in direction ¢)”



LP:
@ p(X)=X{,...,Xn
ee>0
A= plhe—x)=(Aeg —xq1) - (Aey — Xp)

Eigenvalues of x in direction e: % ... %
€1 €n

SDP:
@ p(x) = det(x)
@ec>0
A — det(Ae — x) = det(e) det(A — e~ /2xe™1/2)

Eigenvalues of x in direction e
= traditional eigenvalues of e=1/2xe~1/2



Me(X) < Ape(x) <o < ApelX) roots of A — p(x — Ae)

)

Hyperbolicity Cone:

Aew ={x:0< XM a(x)}

= connected component of
{x : p(x) > 0} containing e

Garding (1959):  pis hyperbolic in direction e forall e € A,
Corollary: A, is a convex cone

Corollary:  x — A\ c(x) is a convex function



Bauschke, Guler, Lewis & Sendov:

If f: R” — R is a convex and permutation;invariant
then x — f(A\z(x)) is convex

Lax, Vinnikov and Helton Theorem:

Every 3-dimensional hyperbolicity cone is
a slice of a PSD cone.

Cor: Faces of hyperbolicity cones are exposed.

Chua: Every homogeneous cone is a slice of a PSD cone.



¢ aunivariate polynomial

If ¢ has only real roots then:
@ ¢’ has only real roots.

@ Roots are interlaced: Ay < X; <X <--- <

a multivariate polynomial
L(x):=(Vp(x),e) (directional derivative)

If pis hyperbolic in direction e then:
@ 1. is hyperbolic in direction e.
o N, CAL,



Inductively: _ _
PV (x) = (Vo (%), e)

A, = /\Sﬁ C /\gl c...C /\g’:” = a halfspace

p(x) = it ple) Eni(Xe(x))
where E, = elementary symmetric polynomial of degree k

/\(e{)+:{XZEk(Xe(X))20, k=1,....,n—1i}



Thm: If p is hyperbolic in direction e

/g H !/
then p/p, is a concave function on A\, , |

Pf:
@ qg(x,t) = tp(x) is hyperbolic in direction (e, 1)
@ Hence, 2971) is hyperbolic in direction (e, 1)
@ Hyperbolicity cone of ’(671) is epigraph of x — —p(x)/pL(x



A ,-Feasibility Problem:  Find x € A, satisfying Ax =

Assume x € N\, satisfies Ax =

&,++

Then A, -feasibility attained by “solving"

max p(x)/pL(x
s.t. Ax =

More generally, assume X is /\g’)ﬂ—feasible.

First find Agjl)—feasible point,
then find /\(Q’ﬁ)—feasible point,
... and, finally, find A, -feasible point.



Hyperbolic Program (HP):
min (¢, x)

s.t. Ax =
X en,

Introduced by Giler (mid-90’s) in context of ipm’s:

“Central Path” = {x(n) : n > 0}
where x(n) solves

min 7 {(c,x) —Inp(x

(c,
st. Ax=0>b

O(v/n)log(1/e) iterations suffice
to reduce a := (¢, x) — (b, y) to e



Hyperbolic Program relaxation:

min  (c, x)

S.t. X =
relax

xeh, -

N————
HP

min
s.t.

(¢, %)

X € /\g)+

Hp)



min (¢, x) min (¢, x)

s.t. Ax =050 s.t. Ax =0




Hyperbolic Program relaxation:

min (¢, x) min (¢, )
S.t. X = S.t. X =
relax (i)
x e, - x e gy
N— -
HP Hpl)

Defn: The “i" central swath” is the set of directions e satisfying
® Ae=0b, ec€ /\(e’;)++ (strict feasibility)

° HPg) has an optimal solution

central path = (n — 1) central swath



see enclosed avi video by Y. Zinchenko



e(t) time dependent

z(t) optimal solution of HP(i()t)
d

Dynamics:  ge(t) = z(t) — e(t)

If i=n—2and e(0) is on the central path
then e(t) traces the central path.

Thm: Assume dual of HP is strictly feasible and i < n — 2.
If £(0) is in the i central swath, then:

@ The dynamics are well-defined
(in particular, e(t) is in the swath for all t > 0)

@ ¢(t) — optimality for HP (what about z(t)?)



min  {(c, x) min (¢, x)

S.t. X = s.t. X =
relax (i)
x e, i x e Ny,
h,—/ -
HP Hp()

z  optimal solution of HPg)

If z ¢ A, then z is optimal also for

miny —In(c,e — x) —
e

S.t. X =

linearly-constrained optimization problem
with strictly convex objective function



min  (c, x)
st Ax =
x e,

z = optimal solution

If z ¢ ON, , then z solves

miny —In{c,e—x) —
st. AX =

X

o

How good is Newton’s method at solving the latter problem?



A general theorem on Newton’s method (Smale, Guler, ...)

min X

ot ¥ — Let z denote optimal solution

For u satisfying Au =0, let ¢,(t) := f(z + tu), and define

7y i= Sup
u, k>2

Thm: If x satisfies Ax = b and

1

(x — 2, V2(2)(x — 2)) < 362

then Newton’s method initiated at x converges quadratically.



For interior-point methods:
x)=n{c,x) —Inp(x
v <1

So [[x — x(n)l[w2r(x(n)) < % = quadratic convergence

For present context:

X

x)=—In{c,e—x) —
) /eX

~ can be arbitrarily large

(“Inversely proportional to curvature of 9\, at z")



X
/
el X

x)=—In(c,e—x) —

Nonetheless, something meaningful can be said ...

Thm:

4
min{||x — z||y2,) : AXx = band x € O\, . }

T >

In other words, quadratic convergence occurs on
nearly the largest “ball” within reason.



Limitation of theorem:
| |lv2/(» reflects curvature of A, at z,
not shape of A, , around z

That shape is reflected by Hessian of /(x) := —InpL(x
If || |lv2r» is (nearly) a scalar multiple of || ||vz/»

then Newton’s domain of convergence
is truly the largest within reason



min (¢, x) min (¢, X)

sit. Ax = sit. Ax =
relax (I)
X eN, - X eN
%/_/ W .
HP Hp(el)
z optimal solution of HP(i)
0=2{(2)<...<2\D, (2)

Cor (to Lax, Vinnikov and Helton Thm):
If 0 < i< n-—2 then there exists a scalar s such that

2
. 14 )
’f)‘(zl,)e(z)g <||||V2f(z)> SH(FI—I))\(),

H VHVzh(z)

o(2)

)

forallv #0
satisfying )\g)e(z +tv)|=o =0

technicality



e(t) time dependent _
z(t)  optimal solution of HPe’()t)
Dynamics:  &e(t) = z(t) — e(t)

To implement, dynamics should be discretized:
€1,6p,... Whereej 1 =¢+d(zj—¢) (0<d<)

Open question:  How large can we safely set the value §?

Zinchenko:

Assume optimal solution z* of HP is unique
and 0 is a root of multiplicity i + 1 for A — p(Ae — z*).

“Then”! in the limit, safe values for ¢ rapidly approach 1.

' Additional technical qualifications are used in the proof, but stating them
here would take the present talk too far afield.





