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Orbitopes

or·bi·tope |"Or bi toUp|

noun

1 the convex hull of an orbit of a compact group acting linearly on

a vector space.

2 highly symmetric convex bodies that have appeared in

many areas of mathematics and its applications,

but have just begun to attract systematic attention.

3 subject of this talk, which is a prequel to Kristian’s.
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Orbitopes

Throughout, G will be a real compact linear algebraic group.

E.g. G = SO(d), the special orthogonal group, or

G = U(d), the unitary group.

Let V be a finite-dimensional real vector space on which G acts.

The orbit of G through v ∈ V is G · v = {g · v | g ∈ G}, an

algebraic manifold. The orbitope Ov of G through v ∈ V is the convex

hull of G · v, a convex semi-algebraic set.

Orbitopes of finite groups G include

the beautifully symmetric Platonic and

Archimedean solids, such as the permu-

tahedron for S4, at right.

We will be interested in orbitopes for

continuous groups.
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Low-dimensional connected Orbitopes

d = 1: There are no one-dimensional orbitopes because SO(1) is a point.

d = 2: The only orbitopes in R
2 are discs.

d = 3: The only orbitopes in R
3 for connected groups are balls.

d = 4: SO(4) has connected subgroups G of dimension 1, 2, 3 and 6.

dim G = 6, then G = SO(4) whose orbitopes are balls in R
4.

dim G = 3, then G = SU(2) acting as the unit quaternions on

H = R
4, and the orbitopes are again balls.

dim G = 2, then G ≃ SO(2) × SO(2) and orbitopes are products

of two discs.

dim G = 1, then G ≃ SO(2) with orbitopes

conv{(cos(pθ), sin(pθ), cos(qθ), sin(qθ)) ∈ R
4
| θ ∈ [0, 2π]

¯

,

which were introduced one century ago by Carathéodory.
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Two examples of Orbitopes

⇒ The Harvey-Lawson (& Morgan, Bryant, Mackenzie...) theory of

calibrated geometry for minimal submanifolds amounts to identifying

faces of the Grassmann orbitope, which is the convex hull the SO(n)

orbit of a decomposable tensor in ∧kR
d. See Philipp Rostalski’s talk.

⇒ Motivated by protein structure reconstruction, Longinetti, Sgheri and I

studied SO(3) orbitopes in the space of symmetric 3 × 3 tensors. 
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Three perspectives on Orbitopes

While orbitopes have been studied previously in different areas of mathe-

matics from different perspectives, their systematic study is now warranted

from the perspective of convex algebraic geometry, which combines three

areas of mathematics, leading to several motivating questions.

Classical convexity : Determine the faces, face lattice, dual bodies, and

Carathéodory numbers of orbitopes. (Carathéodory number of orbitopes is

a version of tensor rank.)

Algebraic geometry : Describe the Zariski boundary of an orbitope, its

equation, and Whitney stratification.

Optimization : Can the orbitope be represented as a (projection of a)

spectrahedron? Can this be done over the field of definiton of the orbit?

How can one efficiently optimize over an orbitope?
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Spectrahedra as noncommutative polytopes

A polyhedron P has a facet description

P = {x ∈ R
d
| x1a1 + x2a2 + · · · + xdad + b ≥ 0} ,

where ai, b ∈ R
n, and ≥ is componentwise comparison.

A spectrahedron is set consisting of those x ∈ R
d such that

x1A1 + x2A2 + · · · + xdAd + B º 0 ,

where Ai, B are symmetric (or hermitian) matrices and X º 0 means

that all eigenvalues of the symmetric matrix X are positive. A polyhedron

is a spectrahedron when Ai, B mutually commute (are diagonal).

Fundamental structural question: Are all convex semialgebraic sets projec-

tions of spectrahedra?
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Convexity

The convex hull of this trigonometric curve

has boundary consisting of two families of

line segments (yellow and green) and two

triangles. The extreme points are that part

of the curve lying in the boundary.

The triangle edges are special—they are not

exposed by any linear functional.
(cos(θ), sin(2θ), cos(3θ))

Each point lies in a convex hull of at most three extreme points (it is fibered

by triangular and rectangular slices), so it has Carathéodory number 3.

It is not a spectrahedron, as it has non-exposed faces, but it is a projection

of a spectrahedron (the Carathéodory orbitope C3), as we’ll see.
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Algebraic Geometry

This convex body is the bounded compo-

nent of the complement of a singular cubic

surface.

Its faces are the four singular points, the six

edges between them, and every other point

in its boundary is extreme. All are exposed.

This is a spectrahedron (hyperplane section of Carathéodory orbitope C2).

Its Zariski boundary is the cubic surface, while the boundary of the previous

body is a reducible hypersurface of degree 21, with the green ruled surface

having degree 16.
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Polarity

The optima of all linear functions on a convex body O ⊂ V are encoded

in its polar body
O

◦
= {ℓ ∈ V

∗
: ℓ|O ≤ 1}.

A centrally symmetric convex body O is the unit ball of a norm on V and

its polar O◦ is the unit ball of the dual norm.

The Whitney stratification of the boundary of O is expected to correspond

to the stratification of the boundary of O◦. This correspondence is exact

and inclusion-reversing for polyhedra.

⇐⇒
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Carathéodory orbitopes

The convex hull of the trigonometric moment curve,

{(cos(θ), sin(θ), cos(2θ), . . . , sin(dθ)) | θ ∈ [0, 2π)} ,

in R
2d is the Carathéodory orbitope Cd, studied by Carathéodory in 1907.

It is an orbitope, as R
2d = (R2)d is a representation of the circle group

SO(2) where a rotation matrix acts on the nth factor via its nth power,
„

cos(θ) − sin(θ)

sin(θ) cos(θ)

«n

=

„

cos(nθ) − sin(nθ)

sin(nθ) cos(nθ)

«

Every orbitope of SO(2) is a coordinate projection of some Carathéodory

orbitope, and convex hulls of trigonometric curves are projections of

Carathéodory orbitopes.
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Spectrahedral representation

By classical results on positive trigonometric polynomials, Cd is those

(x1, . . . , xd) ∈ C
d = (R2)d such that the Toeplitz matrix is PSD,

0

B

B

B

B

B

@

1 x1 x2 . . . xd

x1 1 x1 · · · xd−1

x2 x1 1 ...
... ... . . . x1

xd xd−1 · · · x1 1

1

C

C

C

C

C

A

º 0 .

Theorem. Cd is a neighborly, simplicial convex body whose faces are

in inclusion preserving correspondence with sets of at most d points on

SO(2). It has Carathéodory number d + 1.

Thus SO(2)-Orbitopes are projections of spectrahedra, but not in general

spectrahedra—they have non-exposed faces, by work of Smilansky and

Barvinok-Novik. See Cynthia Vinzant’s talk for the current state of affairs.
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Symmetric Schur-Horn Orbitopes

Permutahedra are orbitopes for the symmetric group Sd. Specifically, let D

be the diagonal d × d matrices of trace zero. Given p, q ∈ D, let λ(p)

be the components of p in nonincreasing order, and write q E p if

λ(q)1 + · · · + λ(q)k ≤ λ(p)1 + · · · + λ(p)k, k = 1, . . . , d−1.

Then the permutahedron through p ∈ D is

Πp = {q ∈ D | q E p}.

Let S2R
d be the space of symmetric d × d

matrices with trace zero, an irreducible repre-

sentation of SO(d) acting by conjugation.

The symmetric Schur-Horn orbitope OM through M ∈ S2R
d is the convex

hull of the orbit SO(d) · M .
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Non-commutative permutahedra

Schur-Horn Theorem. Given M ∈ S2R
d with diagonal D(M) ∈ D and

eigenvalues λ(M), we have D(M) E λ(M). In fact, D(OM) = Πλ(M)

and Πλ(M) is the intersection of OM with the diagonal.

Corollary. OM = {A ∈ S2R
d | λ(A) E λ(M)}.

This implies a complete facial description of OM (similar to that of Πλ(M)),

as well as a spectrahedral representation using Lie algebra Schur functors

(a.k.a additive compound matrices).

Let Lk : gl(Rd) → gl(∧kR
d) be the induced map on Lie algebras. The

eigenvalues of Lk(M) are sums of k distinct eigenvalues of M .

If lk(M) is the sum of the k largest eigenvalues of M ,

OM = {A ∈ S2R
d
| lk(M)I

(d
k)
−Lk(A) º 0, k = 1, . . . , d−1}.

In general, not a spectrahedral representation over its field of definition.
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Skew-symmetric Schur-Horn Orbitopes

SO(d) also acts on skew-symmetric d × d matrices, ∧2R
d. A matrix

N ∈ ∧2R
d may be conjugated to one of the form

„

Λ

−Λ

«

or

0

@

Λ

0

−Λ

1

A

depending on the parity of d. The diagonal matrix Λ = Λ(N) is the skew

diagonal of N—it plays the role here of diagonal matrices.

The role of the permutahedron is played by

the B
⌊d
2⌋

-permutahedron. The orbitope ON

for N ∈ ∧2R
d has inequalities and faces

corresponding to those from the

B
⌊d
2⌋

-permutahedron.
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Tautological Orbitopes

A compact group G acting on V acts by left translation on glV . Orbitopes

for this action are called tautological orbitopes.

For O(d) ⊂ gldR with diagonal projection D,

D(conv(O(d))) = [−1, +1]d, the d-cube.

The nuclear norm of A ∈ gldR is the sum of its singular values, and the

operator norm is its maximal singular value.

Theorem. conv(O(d)) is the operator norm ball. Its polar conv(O(d))◦

is the nuclear norm ball. Both objects are spectrahedra with diagonal

projection the d-cube and

d-dimensional octahedron

(crosspolytope). The

polytopes control the facial

structure of the orbitopes

as before.
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Veronese Orbitopes

The Veronese map

νm : R
d

→ SymmR
d
≃ R

(d+m−1
m−1 )

has image the set of decomposable tensors.

The Veronese orbitope Vd,m is the convex hull of an orbit of decomposable

tensors, which we may take to be νm(Sd−1).

When m = 2n is even, the cone over the coorbitope Vd,2n is the cone of

non-negative d-ary forms of degree 2n. These cones are nearly unknowable,

except when d = 3 and 2n = 4.

⇒ This suggests that understanding orbitopes O and their polars O◦

will be at least as hard as understanding positive polynomials.
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Ternary Quartics

The Veronese orbitope V3,4 is a 14-dimensional convex body. Since non-

negative ternary quartics are sums of squares, V◦
3,4 is a projection of a

spectrahedron—but not a spectrahedron, as Blekherman showed it has

non-exposed faces.

The boundary of V◦
3,4 is the irreducible hypersurface of degree 27 cut out

by the discriminant of the ternary quartic.

Theorem. (Reznick) V3,4 is a spectrahedron. It equals those λabc such that
0

B

B

B

B

B

B

B

@

λ400 λ220 λ202 λ310 λ301 λ211

λ220 λ040 λ022 λ130 λ121 λ031

λ202 λ022 λ004 λ112 λ103 λ013

λ310 λ130 λ112 λ220 λ211 λ121

λ301 λ121 λ103 λ211 λ202 λ112

λ211 λ031 λ013 λ121 λ112 λ022

1

C

C

C

C

C

C

C

A

º 0 .

and λ400 + λ040 + λ004 + 2λ220 + 2λ202 + 2λ022 = 1.
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Thank You!


