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. Ihe problem




linear optimization

over elliptope
with rank constraint




max { (A, X) : X € elliptope, rank X < k}

we care about:

| hardness results,
2. approximation algorithms

depending on the rank
and structure of objective matrix




SDP;.(A) = maX{ZZA?;j Ti T T; € Skl}

i=1 j=1

Grothendieck problem with
rank constraint




A lot of recent

fundamental and unr

and beautiful work

ying problem in many areas:

optimization, functional ana
quantum information

KeEs Roos

ysis, complexity theory, combinatorics,
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2. Classical Grothendieck inequalities
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k equals one: difficult

r TN n

SDP;(A) = maxy 21 Zinj Ti T X € SV
=1 j=1 /
! T; © {—1,—|—1}

s NP-hard (MAXCUT Is special case).

MAXCUT(G) = SDP; (L¢)

L — Laplacian matrix of graph GG




k large: easy

n

SDP,,(A) = max{zzn:flij Ti T x; € SOO}

i=1 j=1

s an SDP without rank constraint.




How big is the gap!

want to prove theorems like:

Given a property P there 1s a smallest constant K p ; so that:

For all matrices A having property P:

SDPy(A) < SDP(A) < Kp SDP,(A)
Grothendieck inequality

A (randomized) polytime app... !

Assuming UGC: no polytime algorithm can do better.




Given a property P there 1s a smallest constant K p ; so that:
For all matrices A having property P:

SDP;(A) < SDPo.(A) < Kp SDP(A)

A (randomized) polytime approximation algorithm achieves Kp.

Assuming UGC: no polytime algorithm can do better.

broblems which have been studied:

. 0 B
1. Kg : Ais of the form (B O>

Ko+ Ais positive semidefinite

2.
3. Kpek @ Ais Laplacian matrix of a graph

4. Kp: Aisofsizenand A; =0 relations
5.

Kr 1 : support of A gives adjacency matrix of graph I




. 0 B
1. Kg : Ais of the form (B O)

inequality: Krivine 1978, Reeds 1993

1.67 = 1.78 ...

7T
S HRean s 2 log(1++v/2)

algorithm: Alon, Naor 2006

UGC hardness: Raghavendra, Steurer 2009

No polytime algorithm attaining Kg 1 — €




2. Kvo : Ais positive semidefinite

inequality: Rietz 1974, Grothendieck 1953

Keo1=Z=157...

a/gorithm: Nesterov 997

UGC hardness: Khot, Naor 2008

No polytime algorithm attaining K+ 1 — €




3. Kper : Ais Laplacian matrix of a graph

inequa/ity: Goemans, Williamson 996, Feige, Schechtman 2002

Komer = 1.13...

a/gorithm: Goemans, Williamson 1996

UGC hardness: Khot, Kindler, Mossel, O'Donnell 200/

No polytime algorithm attaining K,,.1 — €




4. K, :Aisofsizen and A;; =0

inequa/ity: Nemirovski, Roos, Terlaky [999

Charikar, Wirth 2004,
Alon, Naor, Makarychev, Makarychev 2006

Kn,l — @(lOg TL)

a/gorithm: Nemirovski, Roos, Terlaky 1999
Charikar, Wirth 2004,

UGC hardness: not completely settled (but almost)

Arora, Berger, Hazan, Kindler, Safra 2005




5. Kr 1 : support of A gives adjacency matrix of graph I

inequa/ity: Alon, Naor, Makarycheyv, Makarychev 2006

Q(logw(I')) < Kp,; < O(logd(T))

a/gorithm: Alon, Naor, Makarychev, Makarychev 2006

UGC hardness: nothing specific known




given:
M — set of labels
G = (VUW, E) — bipartite graph
we : M — M — permutation for every edge e € E.

find:
f:VUW — M — labeling of vertices

satisfying as many permutations as possible:

Tww) (f(v)) = f(w)

Unique games conjecture (Khot 2002):

There 1s no polynomial time algorithm which distinguishes between
instances where almost all or almost none permutations are satisified.




k> 1

3. New Grothendieck

inequalities




SDPk(A) — 1Nnax ZA@] T, - xj T € Sk—l

i=1 j=1

introduced In the context of quantum nonlocality

A generalized Grothendieck inequality and entanglement in
XOR games

Jop Briét* Harry Buhrman* Ben Toner*

January 14, 2009

Abstract

Suppose Alice and Bob make local two-outcome measurements on a shared entangled state. For any d,
we show that there are correlations that can only be reproduced if the local dimension is at least d. This
resolves a conjecture of Brunner et al. [Phys. Rev. Lett. 100, 210503 (2008)] and establishes that the amount
of entanglement required to maximally violate a Bell inequality must depend on the number of measure-
ment settings, not just the number of measurement outcomes. We prove this result by establishing the first

ph] 14 Jan 2009




X Y-model

A;; — potential between ¢ and j

Ui,..., U, €St — spins

find ground state = minimize

n n

N\ N\
H:—> > Aij u; - u;

2 g Wit Uy

i=1 j=1

total energy
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1. Kg : Ais of the form (B O)

inequality: Haagerup 1987, Briet, Buhrman, Toner 2009

1.27... < Ko < 1.40. ..

algorithm: Haagerup's argument is algorithmic

UGC hardness: nothing specific known




2. Kvo : Ais positive semidefinite

inequality: BOV 2009, Briet, Buhrman, Toner 2009
k ['(k/2)
I'(

Keor ==

: /2)> — 14+ 6(1/k)

Kﬁ(),l :7'('/2: 1.57...

algorithm: BOV 2009 Kroo=4/m=127...
Ki(),g — (37’(’)/8 = 1.17...

(k+1)

UGC hardness: BOV 2009

No polytime algorithm attaining K — €




3. Kper : Ais Laplacian matrix of a graph

inequality: BOV 2009 Kome,1
ch,2

ch,S

algorithm: BOV 2009

UGC hardness: nothing specific known




4. K, :Aisofsizen and A;; =0

inequality: nothing specific kKnown

algorithm: nothing specific kKnown

UGC hardness: nothing specific known




5. Kr 1 : support of A gives adjacency matrix of graph I

inequality: nothing specific kKnown

algorithm: nothing specific kKnown

UGC hardness: nothing specific known




4. Approximation

algorthm




Approximation algorithm

1. Solve SDP..(A). Gives vectors vy, ...,v, € S 1.
2. Take random k x n Gaussian matrix Z = (Z;,), Z;; ~ N(0,1).

3. Round vectors x; = II?JZII z Go=

4. Expected approx1mat10n of SDPy, 1s

SDPk(A) > | LLAZJ% X j --ﬂ[%;'%‘]

7,131

@(k) Z Z A;jvi - vj = 7(k)SDPo (A)

i=1 j=1




2 important properties of

I Z?Ji Z?Jj
2wl ([ Zv;]]

Ex(vi,vj) =E|x; - z;] = E

1. Ex(v;,v;) only depends on the inner product v; - v; € |—1,1]

2. E : [—1,1] — Ris of positive type, i.e.

Ek(ul -ul) Ek(ul -um)

c 53,

Er(um - u1) ... FEi(Um - um)

for all choices of uq, ..., u,, € ™1




Schoenberg's characterization (1942)

A continuous function f : [—1, 1] — R is of positive type

<> 1t can be represented as

f(z):ZfZZZ f07f17f2720 Zf2<00
1=0 i=0

<— follows from Schur product

if X €53y
f(X)=> fi(Xo...0X) €8,
1=0

1 times




subtracting the linear term
:Zf’lfzz f07f17f27°°-20
1=0

Hence,

z+— FEp(z) — fiz  1is of positive type

Hence,




What’s 117

Now the real work starts. ..

1 'Yy

Ey(z eTTV)/2(det V) (F=3)/2qy

) = 25 (k/2) s2, V(@Y 2)(yTYy)

z=(1,0)7, y=(z,vV1-22)T

Y € S%O — distributed according to Wishart distribution
Y=27"Z
7 = (Z;;) e RF*2 Z,i ~ N(0,1)




27 1_,’,, (kj 1)/2 dd
/ / 1—r2 sm¢ )3/2 pdr

T((k + 1)/2)>2
['(k/2)
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THE POSITIVE SEMIDEFINITE GROTHENDIECK PROBLEM
WITH RANK CONSTRAINT

JOP BRIET, FERNANDO MARIO DE OLIVEIRA FILHO, AND FRANK VALLENTIN

ABSTRACT. Given a positive integer n and a positive semidefinite matrix A =
(A;;) € R™*™ the positive semidefinite Grothendieck problem with rank-n-
constraint is

m m
(SDP,,) maximize E E A;j xi - xj, where x1,...,Zm € sn—t,
i=1 j=1
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