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General Discussion

There was a consensus on the need for non–statonary (in time) and non–homogeneous (in space)
models of extremes. For concreteness, the group focused on precipitation measured over time at a
collection of stations distributed over space.

It is important to develop good models that capture:
(i) changes in spatial dependence as a function of the season
(ii) long–term temporal trends due to global warming.

This is motivated by the need to better predict cumulative areal extremes of precipitation over
time. Successful models would have an important impact on insurance (flood, drought, fire), civil
engineering (updating the local building codes for the construction of bridges, dams, irrigation
systems, planing sewers, etc.), agriculture (predicting drought), and public policy (decisions on
funding infrastructure projects such as reservoirs), etc.

Another motivating point is to be able to provide realistic models for statistical down–scaling
from global climate models to finer local scales. One deficiency of the current GCM’s is the coarse
resolution and rather inadequate representation of rainfall events. We feel that a direct statistical
study of local station data would be very helpful in building models that can replicate extreme
precipitation.

Conditional Extremes

Let X(s, t) denote the precipitation amount at station s during time period t (in certain temporal
units, eg over a day, week, month, etc.) A common issue with many current statistical methods
dealing with extremes is related to considering the station–wise maximum

MT (s) := max
1≤t≤T

X(s, t).
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In focusing on MT (s), one essentially discards important data. In particular, the maximum at
station s0 may or may not occur at the same time point as the maximum at another station
s. Thus, one has a very limited information about the spatial dependence. This issue has been
mentioned a number of times in various contexts throughout the week.

One approach to incorporate more data is as follows. Consider a station s0.
1. Suppose that the yearly maximum of daily precipitation at s0 is achieved on day t(s0).
2. Record the ”snap–shot” of daily precipitation at all other stations X(s, t(s0)), at the day

t(s0) when station s0 achieved its maximum.
3. Collect samples the so-constructed ”snap–shots” over a period of say 100 consecutive years.

By focusing on the above sample of surfaces, one essentially conditions on the (yearly) extreme
event at a station s0. The distribution of these surfaces can be interpreted as a distribution of
possible storms diving rise to an extreme event at s0. Such data on the conditional extremes may
be used to:

a. Produce a map of the conditional covariances, variances and correlations, e.g.:

Cov(X(s1, t(s0)), X(s2, t(s0)|MT (s0) = X(s0, t(s0))).

A contour–plot or a heat–map of such quantities may be used as an empirical characterization of
the spatial distribution of a storm. Indeed, one expects that stations located nearby to be highly
correlated.

b. The samples of such surfaces may be also estimated by usual smoothing and dimension
reduction techniques (splines, wavelets, functional PCA) to arrive at more flexible spatial models
of ”storms”.

Spatio–Temporal Extremes: Beyond max–stable models

The methodology of considering extreme scenarios by conditioning on the times when the extremes
are achieved motivates certain extensions of the popular Smith storm model. Namely, consider
a Poisson point process (Xi, Ti,Θi, εi), i ∈ N, in the space (R2 × R+ × Θ × R+) with intensity
dxdtν(dθ)dy. The point (Xi, Ti,Θi, εi) corresponds to a ”storm” originating at location Xi at time
Ti, of type Θi and ”inverse intensity” εi. The ”influence” of this storm at time t and location s
would then be modeled by:

ui(s, t) := f(s−Xi, t− Ti,Θi)/εi, (1)

where f is a suitable non–negative function.
Max–stable models: Under standard integrability conditions on f , the maxima (of all influ-

ences at time t and location s)
ξ(s, t) :=

∨
i∈N

ui(s, t),
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is a max–stable process (space–time random field). It is well–known that one has the extremal
integral representation:

ξ(s, t) =
∫e

R2×R×Θ
f(s− u, t− τ, θ)M1(du, dτ, dθ),

where M1(·) is a 1−Fréchet sup–measure with control measure dudτν(dθ) [1, 2].
The finite–dimensional distributions of ξ(s, t) (in space and time!) are then given as follows:

P{ξ(si, ti) ≤ xi, 1 ≤ i ≤ k} = exp
{
−
∫

R2×R×Θ

(
max
1≤i≤k

f(si − u, ti − τ, θ)/xi

)
dudτν(dθ)

}
.

This is an instance of a mixed moving maxima model, which is stationary in space and time. In
particular, the resulting random field is ergodic (and mixing) and existing general results [3] can
be used to show the strong consistency of empirical functionals of ξ(s, t).

Beyond max–stability As indicated above, a major drawback of max–stable spatial (not
spatio–temporal) models is that considering station–wise maxima erases temporal information
about extremes present in the data. One possible approach is to consider the entire point pro-
cess ui, i ∈ N, where ui = ui(s, t) are points in a space of functions given by (1).

Past data can be used, for example, by using functional PCA methods, to identify an adequate
low–dimensional parametric model for the ui’s. The intensity measure of the underlying Poisson
point process may be modeled by using orographic information along with existing deformation or
non–parametric smoothing techniques. In fact, one can consider non–product intensities, incorpo-
rating a seasonal interaction between space and time. For example,

µ(dt, du) = exp{−ρ(u,A)(1− sin(t))}dudt

defines a measure on R2×R, which emphasizes points u close to a region A ⊂ R2 in the plane, with
the exception of the ”Summer” season (corresponding to t = π/2). More realistic finite–dimensional
parameter models can be constructed as linear combinations of functional PCA components. This
can give rise to a variety of inference problems.
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