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Introductory Remarks

Goal: To compare the extreme precipitation from six RCM’s
for North America.

Primary question: Are these RCM’s telling the same story?

Relation to Impacts?

• A primary aim for developing RCM’s is to model climate
on a scale that is relevant for determining local impacts.

• Extreme precipitation events can have tremendous human
and economic impact.

Audience for this work: Atmospheric scientists, particularly
climate modelers, and statisticians.
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NARCCAP

NARCCAP is a program which is producing a suite of high-
resolution climate model runs for North America.

Abbr. Model Name Modeling Group

CRCM Canadian Regional Climate Model OURANOS / UQAM
ECPC Experimental Climate Prediction Center UC San Diego / Scripps
HRM3 Hadley Regional Model 3 Hadley Centre
MM5I MM5 - PSU/NCAR mesoscale model Iowa State University
RCM3 Regional Climate Model version 3 UC Santa Cruz
WRFP Weather Research & Forecasting model Pacific Northwest Nat’l Lab

Phase I : RCM’s driven by NCEP reanalysis data.
Phase II: RCM’s driven by a suite of AOGCM’s.
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Data: Annual Maxima

For each season (winter: DJF; summer: JJA), we fit a sta-
tistical model to the annual maxima for that season.
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For each RCM, we have 20 fields of annual maxima for each
season (1981-2002): data (model output) are spatially rich,
temporally poor. Fields are 120× 98 = 11760.
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Spatial HM General Framework

Basic idea: Assume there is a latent spatial process that
characterizes the behavior of the data over the study region.

Why bother? Latent process too complex to capture with
fixed effects; covariates not rich enough.

Bayesian formulation, three levels.

Data level: Likelihood which characterizes the distribution of
the observed data given the parameters at the process level.
Often there is an assumption of conditional independence.

Process level: Where the latent process gets modeled by as-
suming a spatial model for the data level parameters.

Prior level: Ties up loose ends. Uses apriori information to
put prior distributions on the parameters introduced in the
process level.
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Data level: GEV-based

Let Zijt be the max precip from RCM i, grid cell j, year t.

We assume

P(Zijt ≤ z) = exp

−(1 + ξij
z − µij
σij

)−1/ξij
 ,

and further assume conditional independence.

To stabilize ξ, we add a penalty (Martins & Stedinger 2000).

Our data level is comprised of the likelihood

π[zi|µi,σi, ξi] = K

d∏
j=1

20∏
t=1

exp

{
−
[

1 + ξij

(
zijt − µij
σij

)]−1/ξij
}

×
1

σij

[
1 + ξij

(
zijt − µij
σij

)]−1/ξij−1
Γ(15)

Γ(9)Γ(6)
(.5 + ξij)

8(.5− ξij)5.
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Process level

We assume

µij ∼ N(XT
j βiµ + Uijµ,1/τ

2
µ)

log(σij) ∼ N(XT
j βiσ + Uijσ,1/τ

2
σ )

ξij ∼ N(XT
j βiξ + Uijξ,1/τ

2
ξ ),

where τ· is a fixed precision.

Spatial model for Ui = (Uiµ,Uiσ,Uiξ): IAR, an improper GMRF.

• Ui has length 3× 11760 = 35280.

• IAR defined by precision matrix Q. We assume Q = T⊗Q1,
T : 3 × 3, Q1 : 11760 × 11760; Q1 based on a 1st-order
neighborhood structure, very sparse.

• IAR is a simple, computationally-feasible spatial model
that enables borrowing strength across locations.
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Prior level

Conjugate priors:

T ∼ Wishart prior

β ∼ independent normal priors

Implementation

• 70569 non-indep parameters; effective number ≈ 10100

• MCMC via a Gibbs sampler

• (µr,i, σr,i, ξr,i) updated cell-by-cell via Metropolis Hastings.

• All other parameters drawn directly.

• Take advantage of separability of Q and sparseness of Q1.

• MCMC run of 6,000 iterations takes approx. 12 hrs.

• Four parallel chains for each RCM–convergence assessed.
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Winter Parameter Estimates: CRCM
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Note: estimation of any high quantile is straightforward.
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Comparison of Winter 100-year Return Levels
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Examining ξ (Winter)
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Significance (Winter)

Std Dev 100 RL CRCM Model F-statistic
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F-test for equality of means, significance level: 2.22
(disregards spatial dependence and multiple testing issues)
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Comparison of Summer 100-year Return Levels
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Examining ξ (Summer)
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Significance (Summer)

100-year Return Level ξ
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F-test for equality of means, significance level: 2.22
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Comparison to Ground Station (Summer)

Summer Estimates for Fort Collins, CO
95% credible intervals

ξ 100-yr RL
Weather Station1 (0.097, 0.144) (9.01, 12.12)

CRCM (0.040, 0.158) (3.91, 5.63)
ECPC (0.029, 0.145) (6.70, 10.18)
HRM3 (0.080, 0.199) (5.22, 8.40)
MM5I (0.102, 0.224) (6.76, 10.61)
RCM3 (0.100, 0.207) (10.19, 15.52)
WRFP (0.130, 0.240) (3.54, 5.66)

1Weather station estimates from Cooley et al. (2007).
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Is the spatial hierarchical model necessary?

CRCM, Summer
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What is the benefit of the spatial hierarchical model?

Estimates for ξ, CRCM Model, Summer

Spatial Hierarchical Model Pointwise with M&S Penalty
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