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Introductory Remarks

Goal: To compare the extreme precipitation from six RCM's
for North America.

Primary question: Are these RCM's telling the same story?

Relation to Impacts?

e A primary aim for developing RCM’s is to model climate
on a scale that is relevant for determining local impacts.

e Extreme precipitation events can have tremendous human
and economic impact.

Audience for this work: Atmospheric scientists, particularly
climate modelers, and statisticians.



NARCCAP

NARCCAP is a program which is producing a suite of high-
resolution climate model runs for North America.

Abbr. Model Name Modeling Group

CRCM Canadian Regional Climate Model OURANOS / UQAM
ECPC Experimental Climate Prediction Center UC San Diego / Scripps
HRM3 Hadley Regional Model 3 Hadley Centre

MM5I MMS5 - PSU/NCAR mesoscale model Iowa State University
RCM3 Regional Climate Model version 3 UC Santa Cruz

WRFP Weather Research & Forecasting model

Pacific Northwest Nat’l Lab

Phase I : RCM's driven by NCEP reanalysis data.
Phase II: RCM'’s driven by a suite of AOGCM’s.



Data: Annual Maxima

For each season (winter: DJF; summer: JJA), we fit a sta-
tistical model to the annual maxima for that season.

CRCM Winter 1981 CRCM Summer 1988
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For each RCM, we have 20 fields of annual maxima for each
season (1981-2002): data (model output) are spatially rich,
temporally poor. Fields are 120 x 98 = 11760.



Spatial HM General Framework

Basic idea: Assume there is a latent spatial process that
characterizes the behavior of the data over the study region.

Why bother? Latent process too complex to capture with
fixed effects; covariates not rich enough.

Bayesian formulation, three levels.

Data level: Likelihood which characterizes the distribution of
the observed data given the parameters at the process level.
Often there is an assumption of conditional independence.

Process level: Where the |latent process gets modeled by as-
suming a spatial model for the data level parameters.

Prior level: Ties up loose ends. Uses apriori information to
put prior distributions on the parameters introduced in the
process level.



Data level: GEV-based

Let Z;;; be the max precip from RCM ¢, grid cell j, year t.

We assume
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and further assume conditional independence.

To stabilize £, we add a penalty (Martins & Stedinger 2000).

Our data level is comprised of the likelihood
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Process level

We assume
pij ~ N(XJ Biy + Uiju, 1/7;)
10g(0i) ~ N(X!Bio + Uijo, 1/72)
&ij ~ N(X| Bic + Usje, 1/75),

where 7. is a fixed precision.

Spatial model for U; = (U, Uiy, Ui¢): IAR, an improper GMRF.

e U, has length 3 x 11760 = 35280.

e IAR defined by precision matrix Q. We assume Q = T'QQ1,
T :3x3, Q111760 x 11760, 1 based on a 1st-order
neighborhood structure, very sparse.

e IAR is a simple, computationally-feasible spatial model
that enables borrowing strength across locations.



Prior level

Conjugate priors:

T ~ Wishart prior

B ~ independent normal priors

Implementation

e 70569 non-indep parameters, effective number ~ 10100
e MCMC via a Gibbs sampler

o (uri,ori,&5) updated cell-by-cell via Metropolis Hastings.
e All other parameters drawn directly.

e Take advantage of separability of Q and sparseness of ;.
e MCMC run of 6,000 iterations takes approx. 12 hrs.
e Four parallel chains for each RCM—convergence assessed.



Winter Parameter Estimates: CRCM
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Note: estimation of any high quantile is straightforward.



Comparison of Winter 100-year Return Levels
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Significance (Winter)

Std Dev 100 RL CRCM Model F-statistic
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F-test for equality of means, significance level: 2.22
(disregards spatial dependence and multiple testing issues)



Comparison of Summer 100-year Return Levels
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Significance (Summer)

100-year Return Level &
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F-test for equality of means, significance level: 2.22



Comparison to Ground Station (Summer)

Summer Estimates for Fort Collins, CO

95% credible intervals

¢ 100-yr RL

Weather Station! | (0.097, 0.144)| (9.01, 12.12)
CRCM (0.040, 0.158) | (3.91, 5.63)
ECPC (0.029, 0.145) | (6.70, 10.18)
HRMS3 (0.080, 0.199)| (5.22, 8.40)
MMS5I (0.102, 0.224)| (6.76, 10.61)
RCM3 (0.100, 0.207) | (10.19, 15.52)
WRFP (0.130, 0.240) | (3.54, 5.66)
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Weather station estimates from Cooley et al. (2007).



Is the spatial hierarchical model necessary?

CRCM, Summer
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What is the benefit of the spatial hierarchical model?

Estimates for &, CRCM Model, Summer

Spatial Hierarchical Model Pointwise with M&S Penalty
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