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1. Introduction

The newly emerging field of vision and pattern recognition focuses on the study of
2-dimensional “shapes”, i.e., simple, smooth, closed curves in the plane. A common
approach to describing shapes consists of defining “natural” distances between them,
embedding the shapes into a metric space and then studying the mathematical structure
of the latter. Of course, the resulting metric space must faithfully represent the continuous
variability of shapes and reflect in their classification a similarity between them, i.e., not
make a distinction between the shapes obtained from one another by scaling or translation
(cf. [3] and many references therein). Also, one may consult [12] for extensions to analysis
of “surfaces”, more specifically, surfaces of a human face.
Another idea which has apparently been pioneered by A. Kirillov [9, 10] and developed

by Mumford and Sharon [11] and many others, consists of representing each shape by its
“fingerprint”, an orientation-preserving diffeomorphism of the unit circle. In this context
every shape defines a unique equivalence class of such diffeomorphisms (up to a right
composition with a Möbius automorphism of the unit disk onto itself.) More precisely, let
Γ be a smooth, simple closed curve (a Jordan curve) in C, Ω− the region enclosed by Γ (i.e.

the bounded component of C\Γ), and Ω+ := Ĉ\Ω−, where Ĉ denotes the Riemann sphere

Ĉ := C ∪ {∞}. Let Φ− : D → Ω−, Φ+ : D+ → Ω+, where D = {|z| < 1} is the unit disk,

D+ its complement in Ĉ, and Φ± are conformal maps (whose existence is guaranteed by the
Riemann mapping theorem). We accept the normalization Φ+(∞) = ∞ and Φ′

+(∞) > 0,
where the latter means that Φ+ has a Laurent series expansion in neighborhood of infinity,

Φ+(z) = az +
∞∑
k=0

akz
−k,

with a > 0. From now on we shall assume Γ to be a C∞ curve, and hence Φ± extend in
a C∞ fashion to the boundaries of their respective domains. Let T = ∂D denote the unit
circle and consider k := Φ−1

+ ◦Φ− : T → T, an orientation preserving C∞-diffeomorphism
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of the unit circle onto itself. We can think of the derivative k′ as a 2π-periodic function on
R. We have then k(x+ 2π) = k(x) + 2π and k′ > 0. Obviously, k is uniquely determined
by Γ up to a Möbius automorphism of D, i.e. up to right composition k ◦ ϕ with

(1.1) ϕ(z) = λ
z − a

1− āz
, |λ| = 1, a ∈ D.

The equivalence class of the diffeomorphism k under the action of the Möbius group of
automorphisms (1.1) is called the fingerprint of Γ. Moreover, if Γ̃ denotes the curve A(Γ),
where A is the affine transformation

(1.2) A(z) = az + b, a > 0, b ∈ C,

then the fingerprint of Γ̃ equals that of Γ, as is easily verified. Thus, we have a map F
from the set of all smooth Jordan curves Γ modulo scaling and translation as in (1.2),
shapes, into the set of all orientation preserving diffeomorphisms k of the circle modulo
Möbius automorphisms (1.1) of the unit disk, fingerprints, . The following theorem was
first explicitly stated in [9, 10], although as is noted in [9, 10, 11] it follows more or less
directly from the results of Ahlfors and Bers [1] on solutions of Beltrami equation (cf.
[14]).

Theorem 1.1. The map F is a bijection.

Using this theorem and well-developed software packages, e.g., [6], Mumford and Sharon
show how in principle one may recover (i.e., approximate) Γ from its fingerprint k and
vice-versa, by approximating Γ by polygons and using the Schwarz–Christoffel formula.
The experimental data presented in [11] looks stunningly convincing.
Note in passing that if we relax significantly the smoothness hypothesis on Γ, the map

Γ → k from closed curves to circle homeomorphisms is neither onto nor one-to-one (cf.
[5]).
In this paper, we present a somewhat “ideologically” different explanation of why Kir-

illov’s theorem is true, motivated by a well-known theorem of Hilbert (cf. [15, Ch. 4])
stating that any smooth curve can be approximated (with respect to the Hausdorff dis-
tance in the plane (2.6)) by polynomial lemniscates. A considerable advantage in this
approach lies in the observation that the fingerprint of a polynomial lemniscate of degree
n is particularly simple, an nth root of a (finite) Blaschke product of degree n (Theorem
2.2). We then show that every smooth, orientation-preserving diffeomorphism of the cir-
cle can be approximated in the C1-norm by these former simple ones (Theorem 2.3). To
complete the picture in this approach, we show that a diffeomorphism of the unit circle
given by the nth root of a Blaschke product of degree n is the fingerprint of a unique
polynomial lemniscate of degree n (Theorem 3.1). Although we have not been able yet
to reconstruct effectively a lemniscate from its fingerprint on the circle, we still hope that
via associated finite Blaschke products lemniscates could serve as natural and convenient
“coordinates” in the enormous space of smooth shapes.
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In Section 2, we discuss fingerprints of polynomial lemniscates and show that the dif-
feomorphisms induced by roots of finite Blaschke products approximate all smooth diffeo-
morphisms of the circle. In Section 3, we prove that the diffeomorphisms induced by roots
of finite Blaschke products are fingerprints of lemniscates. We end with some questions
and remarks assembled in §4.

2. Lemniscates and their fingerprints

A (polynomial) lemniscate of degree n is a subset Γ ⊂ C of the form

{z ∈ C : |P (z)| = 1},
where P (z) is a polynomial in z of degree n. We let Ω− := {z ∈ C : |P (z)| < 1} and

Ω+ := Ĉ\Ω− = {z ∈ C : |P (z)| > 1}∪{∞}. An immediate consequence of the maximum
modulus theorem is that Ω+ can have no bounded components and, hence, is a connected

open subset containing a neighborhood of ∞ in Ĉ. We shall say that Γ is a proper
lemniscate of degree n if Γ is smooth (P ′(z) ̸= 0 on Γ) and Ω− is connected. Note that
the interior Ω− of a proper lemniscate of degree n (or, for a general smooth lemniscate,
each component of Ω−) is also simply connected, since its complement is connected.
Recall that the critical points of a polynomial P (z) of degree n are the zeros of its

derivative P ′(z). Let z1, . . . , zn−1 be the critical points (repeated according to their multi-
plicity) of P (z). The values w1, . . . , wn−1, where wk = P (zk) for k = 1, . . . , n−1, are called
the critical values of P (z). The multiplicity of a critical value w is the number of times it
appears in the list w1, . . . , wn−1. For a smooth lemniscate Γ of degree n, the property of
being proper can be characterized by the critical values of its defining polynomial.

Proposition 2.1. Let P (z) be a polynomial of degree n and assume that the lemniscate
Γ = {z ∈ C : |P (z)| = 1} is smooth. The following are equivalent:

(i) The open set Ω− = {z ∈ C : |P (z)| < 1} is connected (i.e. Γ is a proper lemniscate of
degree n).

(ii) All the critical values w1, . . . , wn−1 of P (z) satisfy |wk| < 1.

Proof. First note that no critical value can satisfy |wk| = 1 since Γ is smooth. Let r denote
the number of critical points, counted with multiplicities, in Ω−. Statement (ii) above is
then equivalent to r = n−1. The equivalence of (i) and (ii) is a simple consequence of the
classical Riemann-Hurwitz formula. Indeed, let Ω1, . . . ,Ωk denote the components of Ω−,
and dj and rj for j = 1, . . . , k the number of zeros and critical points, respectively, of P in
Ωj. We then have d1+ . . .+dk = n and r1+ . . .+rk = r. Now, let fj denote the restriction
of P to Ωj. Each fj is then a dj-to-1 ramified covering (proper analytic map) fj : Ωj → D
with total ramification number rj. Since each Ωj, as well as D, is simply connected and
hence has Euler characteric 1, the Riemann-Hurwitz formula in this setting (see e.g. [13])
states that

−1 = −dj + rj, j = 1, . . . k.
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By summing over j, we obtain −k = −n + r or r = n − k. Thus, we have r = n − 1 if
and only if the number of components of Ω− is one. �

Consider a proper lemniscate Γ = {z ∈ C : |P (z)| = 1} of degree n. Clearly, there is no
loss of generality in assuming that the degree n coefficient of P (z) is real and positive, i.e.

(2.1) P (z) = anz
n + an−1z

n−1 + . . .+ a0, an > 0, ak ∈ C for k = 0, . . . , n− 1.

Let ξ1, . . . , ξn ∈ Ω− be the zeros of P (repeated with multiplicity), and Φ− : D → Ω− a
Riemann mapping. Then, P ◦ Φ− is an n-to-1 ramified covering D → D and hence must
be a finite Blaschke product of degree n, i.e.,

(2.2) B1(z) := (P ◦ Φ−)(z) = eiθ
n∏
1

z − aj
1− ajz

, aj = Φ−1
− (ξj) , θ ∈ R.

Indeed, (P ◦ Φ−) /B1 is analytic in D, does not vanish there, is continuous in the closed
disk and has modulus one on T := ∂D, and thus is a unimodular constant.
Now let Φ−1

+ : Ω+ → D+ be the conformal mapping from the exterior Ω+ ⊂ Ĉ of Γ onto

the exterior of the unit disk D+ ⊂ Ĉ, normalized by Φ−1
+ (∞) = ∞,

(
Φ−1

+

)′
(∞) > 0. We

claim that

(2.3) Φ−1
+ (w) = n

√
P (w),

where we choose a suitable branch of the nth root (i.e. n
√
1 = 1) to comply with our

normalization of
(
Φ−1

+

)′
(∞) > 0. To see this, we note that P ◦Φ+ has a pole of order n at

∞, no other poles in D+, and maps D+ to itself sending the boundary T = ∂D+ to itself;
i.e. P ◦Φ+ is a ramified n-to-1 covering D+ → D+. It follows, as above, that B2 := P ◦Φ+

is a Blaschke product of degree n and since B2 has all its poles at ∞ we conclude that
B2(z) = czn, where c is a unimodular constant. Since (Φ′

+)(∞) > 0 and the highest
degree coefficients an of P is positive, we deduce that in fact c = 1 and B2(z) = zn. The
identity (2.3) follows readily. Since the fingerprint of Γ is given by k = Φ−1

− ◦ Φ+, we
obtain the following theorem.

Theorem 2.2. Let P be a polynomial of degree n such that Γ = {z ∈ C : |P (z)| = 1} is a
proper lemniscate of degree n. Let Ω− be the interior of Γ and Φ− : D → Ω− a Riemann
mapping. Then, the fingerprint k : T → T of Γ is given by

(2.4) k(z) = n
√
B(z)

where B is the Blaschke product

(2.5) B(z) = eiθ
n∏

k=1

z − ak
1− ākz

, ak = Φ−1
− (ξk), θ ∈ R,

and ξ1, . . . , ξn denote the zeros of P repeated according to multiplicity.
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In view of Hilbert’s theorem (cf. [15, Ch. 4]) that every smooth curve can be approxi-
mated by lemniscates in the Hausdorff metric, which measures the distance between two
curves C1, C2 as (cf. [3])

(2.6) dist (C1, C2) = sup
z∈C2

inf
w∈C1

|z − w|+ sup
z∈C1

inf
w∈C2

|z − w|,

our next goal is to address the following two questions:

(I) Do the diffeomorphisms k given by (2.4) approximate in some reasonable metric
all orientation preserving diffeomorphisms of the unit circle?

If the answer to (I) is in the affirmative, then to complete our (alternative) approximate
visualization of Theorem 1.1 we have to answer the following question

(II) Does each diffeomorphism (2.4) represent the fingerprint of a lemniscate?

The following theorem answers (I).

Theorem 2.3. The (algebraic) diffeomorphisms (2.4) approximate all orientation pre-
serving diffeomorphisms Ψ of the circle T in the C1-norm.

Remark 2.4. As usual, the C1-norm on T means

∥f∥C1 = sup
θ

(∣∣f (eiθ)∣∣+ ∣∣f ′ (eiθ)∣∣) .
Proof. First, we note that it suffices to verify the theorem for real-analytic diffeomorphisms
Ψ since the latter are dense in the C1-norm in the set of all diffeomorphisms of T. Let
Ψ(θ) = exp(iψ(θ)), where the real-valued function ψ(θ) is strictly monotone increasing
and ψ′ > 0 is 2π-periodic. Of course, ψ(θ + 2π) = ψ(θ) + 2π. To approximate ψ(θ) on
[0, 2π] in C1-norm by arguments of functions in (2.4) it suffices to approximate uniformly

on T a (positive) function ψ′ such that
∫ 2π

0
ψ′dθ = 2π by functions

1

n

d

dθ
argB

(
eiθ
)
,

where B is a Blaschke product of degree n. Note that a straightforward calculation yields

(2.7)
1

2π

d

dθ

(
1

n
argB

(
eiθ
))

=
1

2π

{
1

n

n∑
j=1

P
(
eiθ, aj

)}
,

where for

(2.8) z = reiϕ, P
(
eiθ, z

)
:=

1− r2

1 + r2 − 2r cos(θ − ϕ)

denotes the Poisson kernel evaluated at z.
Following [8], we argue now as follows. Since ψ′ is positive and real-analytic on T, we can

approximate it by a positive trigonometric polynomial h(θ) =
N∑
−N

ake
ikθ > 0 maintaining

the normalization
∫
T hdθ = 2π. Observe the following:
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(i) We can consider h(θ) to be boundary values of a bounded positive harmonic func-

tion H(r, θ) :=
N∑
−N

akr
−|k|eikθ in CrD (in other words, replacing zk, zk by 1

zk
and

1
zk

in the expansion of h in terms of z, z).
(ii) H(r, θ) extends as a positive harmonic function to a slightly larger domain DR

− :=
{|z| > R,R < 1} — this is obvious in view of the continuity of H and the
compactness of T.

Representing h(θ) = H
(
eiθ
)
|r=1 in DR

− via the Poisson integral of its boundary values
on {|z| = R < 1} and taking into account the change in orientation we easily obtain

(2.9)

h
(
eiθ
)
= H

(
eiθ
)
|r=1 =

1

2π

∫ 2π

0

1−R2

1 +R2 − 2R cos(θ − φ)
H
(
Reiφ

)
dφ

=

∫
|z|=R,R<1

P
(
eiθ, z

)
dµ(z),

where µ > 0 is a probability measure supported on a compact subset of D, i.e., on
the circle {|z| = R < 1}. Every such measure µ is a weak∗ limit of discrete atomic
probability measures with n atoms, n → ∞, having equal charges 1/n at these atoms.
This last observation together with (2.7) finishes the proof of the assertion that ψ′, with
2π∫
0

ψ′dθ = 2π, is uniformly approximable on T by functions

1

n

d

dθ
argB

(
eiθ
)
,

where B is a Blaschke product of degree n. The remaining part of the theorem is easily
derived from it, so we shall omit it. �

3. Roots of Blaschke products as fingerprints

In this section, we shall prove a converse to Theorem 2.2, which answers question (II)
above:

Theorem 3.1. Let B be a Blaschke product of degree n,

(3.1) B(z) = eiθ
n∏

j=1

z − aj
1− ajz

, |aj| < 1.

There there is a proper lemniscate Γ ⊂ C of degree n such that its fingerprint k : T → T
is given by

(3.2) k(z) = n
√
B(z).

If Γ̃ ⊂ C is any other C1-smooth Jordan curve with the same fingerprint, then there is an
affine linear transformation T (z) := az + b, with a > 0 and b ∈ C, such that Γ̃ = T (Γ).
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Proof. The uniqueness part of the theorem is of course a consequence of Theorem 1.1,
but for the readers’ convenience we shall reproduce the simple proof here. Suppose that
two C1-smooth Jordan curves Γ, Γ̃ ⊂ C have the same fingerprint, and let Φ−, Φ̃−,Φ+, Φ̃+

be the corresponding Riemann mappings D− → Ω−, D− → Ω̃−, D+ → Ω+, D+ →
Ω̃+, respectively (following the notation introduced above in an obvious way). Since
both Jordan curves are assumed C1-smooth, all Riemann mappings extend continuously
and homeomorphically to the corresponding boundaries. (For this conclusion, weaker
conditions than that of being C1 suffice, but mere continuity does not; cf. [5]).) The fact
that the two fingerprints are equal means that Φ−1

+ ◦Φ− = Φ̃−1
+ ◦ Φ̃− on T = ∂D− = ∂D+.

This can be rewritten as Φ̃+◦Φ−1
+ = Φ̃−◦Φ−1

− on Γ = ∂Ω−. We conclude that the conformal

mapping Φ̃+ ◦ Φ−1
+ : Ω+ → Ω̃+ can be extended as a conformal mapping T : Ĉ → Ĉ by

defining it as Φ̃− ◦ Φ−1
− in Ω−. Since T (∞) = ∞ and T ′(∞) > 0, we conclude that

T (z) = az + b with a > 0 and b ∈ C. This proves the uniqueness modulo affine linear
transformations of the type described in the theorem.
To prove the existence part of the theorem, we shall consider a modification of the map

F defined in the introduction in the setting of lemniscates and Blaschke products. A
proper lemniscate Γ of degree n is the set of points z ∈ C that satisfy |P (z)| = 1, where
P is a polynomial in z of degree n whose highest order coefficient is positive (see (2.1))
and all of whose critical values belong to D (see Proposition (2.1)). It follows immediately
from (2.3) that the polynomial P is uniquely determined by Γ. We shall let L denote the
subset of R× C× . . .× C (with n factors of C) that, under the map

(3.3) (an, an−1, . . . , a0) 7→ P (z) := anz
n + . . .+ a0,

yields polynomials whose lemniscates are proper of degree n. Clearly, L is open. One
can also easily prove that L is connected by using Proposition 2.1 in the following way.
Let P be a polynomial of degree n corresponding to a point in L and denote by Γ the
corresponding proper lemniscate of degree n. By Proposition 2.1, the critical values of
P all have modulus less than one. Consider the lemniscates ΓR defined by |P (z)| = R,
or equivalently by |PR(z)| = 1 where PR(z) := P (z)/R, for R ≥ 1. Clearly, the critical
values of PR all belong to the open disk of radius 1/R ≤ 1 and hence the lemniscates ΓR

are proper lemniscates of degree n. Now, pick r > 0 such that

(3.4) nan|z|n−1 −
(
(n− 1)|an−1|z|n−2 + (n− 2)|an−2||z|n−3 + . . .+ |a1|

)
> 0, ∀|z| ≥ r,

and then pick R > 0 such that

(3.5)
1

R

(
an|z|n + |an−1||zn−1|+ . . .+ |a0|

)
≤ 1

2
, ∀|z| ≤ r.

Finally, consider the lemniscates Γt
R defined by the polynomials

P t
R(z) :=

1

R

(
anz

n + t(an−1z
n−1 + . . .+ a0)

)
, 0 ≤ t ≤ 1.
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It follows immediately from (3.4) and (3.5) that the critical values of P t
R, for 0 ≤ t ≤ 1,

have modulus less than 1 and, hence, the Γt
R are all proper lemniscates of degree n. Note

that Γ0
R is a circle. Thus, we conclude that any proper lemniscate Γ of degree n can be

deformed through proper lemniscates of degree n to a circle. It follows that the open
subset L is connected.
As explained in the introduction, the fingerprint of a shape remains unchanged under

translations and scaling. In other words, given a proper lemniscate Γ = {z : |P (z)| = 1}
of degree n with fingerprint k : T → T, let Γab be the image of Γ under the inverse of
the affine linear transformation Tab(z) := az + b, with a > 0 and b ∈ R, and let kab
denote its fingerprint. Then, we have k = kab. We shall consider the space of equivalence
classes {Γab}a>0, b∈C of proper lemniscates Γ of degree n under this action of the group
G := {T (z) = az + b : a > 0, b ∈ C}. Note that if Γ is defined by |P (z)| = 1, then Γab is
defined by |Pab(z)| = 1, where

(3.6)
Pab(z) := P (az + b) = an(az + b)n + . . .+ a0

= ananz
n + (nanb+ an−1)z

n−1 + . . .+ P (b).

Thus, in each equivalence class there is a unique polynomial of the form (2.1) with an =
1/n and an−1 = 0. In other words, we can parametrize the space of equivalence classes of
proper lemniscates of degree n by a subset EL ⊂ Cn−1 under the identification

(3.7) (a0, . . . , an−2) 7→ P (z) =
1

n
zn + an−2z

n−2 + . . .+ a0.

The subset EL ⊂ Cn−1 is clearly open and connected by the same arguments as above.
We also note that there is a finite, n-to-1, holomorphic (polynomial) mapping Λ: Cn−1 →
Cn−1 induced by the action of G and defined as follows. For (ã1, . . . , ãn−1) ∈ Cn−1, consider
the polynomial

(3.8) P̃ (z) :=
1

n
zn + ãn−1z

n−1 + . . .+ ã1z.

The image Λ(ã1, . . . , ãn−1) are the coefficients (a0, . . . , an−2) of the unique polynomial of
the form

(3.9) P (z) =
1

n
zn + an−2z

n−2 + . . .+ a0

in the equivalence class of P̃ under the action of G described in (3.6). (The reader may

want to write down this map explicitly.) Let ẼL denote the inverse image of EL under this
map. For future reference, we remind the reader of the following well-known property,
which will be used below, of a finite holomorphic mapping (or a branched covering) H
from one complex manifold X to another Y (endowed with some metrics). The inverse
images of H in X depend continuously on the values in Y in the following sense: Let
w0 ∈ Y and let H−1(w0) denote the (finite) set of inverse images. For any ϵ > 0, there
exists δ > 0 such that if w belongs to a δ-ball centered at w0, then the set of inverse
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images H−1(w) belongs to the union of ϵ-balls centered at the points of H−1(w0). We
shall say that H−1(w) converges to H−1(w0) as a set.
Next, consider the collection of Blaschke products of degree n,

(3.10) B(z) = λ

n∏
k=1

z − bk
1− b̄kz

, bk ∈ D, λ ∈ T.

Let M be the Möbius group consisting of automorphisms of the unit disk

ϕ(z) := λ
z − b

1− b̄z
, |λ| = 1, b ∈ D,

acting on Blaschke products by right composition. (Recall from the introduction that
the fingerprint of a shape is only defined modulo this action on orientation preserving
diffeomorphisms of T.) It is readily seen that each Blaschke product can be brought to
one of the form

(3.11) B(z) = z
n−1∏
k=1

z − bk
1− b̄kz

, bk ∈ D,

by the action of M. Also, each equivalence class of Blaschke products under this action
contains a finite number (n generically) of Blaschke products of this form. The Blaschke
product in (3.11) is of course invariant under permutations of the roots (b1, . . . , bn−1), and
hence the set of such Blaschke products can be identified with the image B of Dn−1 :=
D× . . .× D ⊂ Cn−1 under the finite holomorphic mapping Cn−1 → Cn−1

(3.12) (b1, . . . , bn−1) 7→ (S1(b), S2(b), . . . , Sn−1(b)),

where Sj(b) denotes the jth symmetric function on n− 1 elements:

n−1∏
j=1

(z − bj) = zn−1 + S1(b)z
n−2 + . . .+ Sn−2(b)z + Sn−1(b).

Now, let EB denote the set of equivalence classes of Blaschke products under the action of
M, and let π denote the projection of B onto EB. Since the action of M on B ⊂ Cn−1 is
algebraic with only finitely many points in each equivalence class, EB is an algebraic variety
(quotient singularity) of dimension n − 1. Moreover, being the image under successive
continuous mappings (the finite mapping (3.12) followed by π) of the connected space
Dn−1, the space EB is connected.
By the discussion in Section 2, we obtain a map F : EL → EB as follows. For an

element e = (a0, . . . , an−2) ∈ EL, let P denote the corresponding polynomial (3.7), Γ =
{z ∈ C : |P (z)| = 1} its proper lemniscate, Φ− : D → Ω− a Riemann map, and B := P ◦Φ−
the corresponding Blaschke product (so that the fingerprint of Γ is the nth root of B by
Theorem 2.2). We define F(e) := π(B). If we choose another Riemann map, we obtain
another Blaschke product in the same equivalence class (and hence F is well defined).
Also, any Blaschke product in this equivalence class can be produced by choosing a
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suitable Riemann map. Thus, to finish the existence part of Theorem 3.1 it suffices to
show that F is surjective. We first claim that F is continuous. To see this, let {ek}
(notation as above) be a sequence of points in EL converging to e0. Let Pk, P0 be the
corresponding polynomials and Γk,Γ0 their lemniscates with interiors Ωk,Ω0. (Since we
shall not need the exteriors in this argument, we shall omit the subscript ”-” on the
interiors and Riemann maps.) If we let K be a closed disk that contains Ω0 in its interior,
then Pk → P0 uniformly on K and, hence, Γk → Γ0 in the Hausdorff metric (2.6). Let us
fix a w ∈ Ω0. Then, w ∈ Ωk for k sufficiently large. Now, let Φ0 : D → Ω0, Φk : D → Ωk

be Riemann mappings normalized by Φ0(0) = Φk(0) = w and Φ′
0(0) > 0,Φ′

k(0) > 0. By
a well-known theorem of Carathéodory (cf. [7, Ch. II, Sec. 5]) the Riemann mappings
Φk : D → Ωk converge uniformly in D to the Riemann mapping Φ0 : D → Ω0. Observe
that the mapping taking the n roots (ξ1, . . . , ξn) of a monic polynomial to its n coefficients
(a0, . . . , an−1) is a finite holomorphic mapping (indeed, given by (3.12) above modulo
notation). Hence, the roots, as a set, depend continuously on the coefficients (in the sense
explained above). It follows that the roots of Pk converge to the roots of P0 (again, as
sets). We conclude that B−1

k (0) = (Pk ◦ Φk)
−1(0) converge to B−1

0 (0) = (P0 ◦ Φ0)
−1(0).

This means that Bk → B0 in B and, hence, F(ek) = π(Bk) → F(e0) = π(B0) in EB. This
proves that F is continuous.
Next, we observe that the map F is not injective. Indeed, the map as described above

produces for each element e ∈ EL an equivalence class of a Blaschke product B such that
B = kn, where k is the finger print of the lemniscate Γ associated to the point in EL.
We proved above that the map taking the point e ∈ EL to its fingerprint is injective.
Thus, two lemniscates Γ1 and Γ2 corresponding to two points in EL will produce the same
Blaschke product precisely when their fingerprints satisfy k2 = ϵk1, where ϵ is a root of
unity: ϵn = 1. Now, it is easy (and left to the reader) to verify that if T (z) = λz, for some
|λ| = 1, then, for any shape Γ with fingerprint k, the fingerprint of T (Γ) is λk. Let us
introduce an equivalence relation on EL where two elements e1 and e2 are equivalent when
their corresponding lemniscates Γ1 and Γ2 are related by Γ2 = T (Γ1) for some T (z) = ϵz
with ϵn = 1. If we let EL′ denote the set of equivalence classes of elements in EL, then
by the comments above the map F factors as the map EL → EL′ and an injective map
F ′ : EL′ → EB. As in the case of EB above, the set EL′ is an algebraic variety of dimension
n − 1. The map F ′ : EL′ → EB is continuous. To prove that F is surjective, we shall
employ Koebe’s continuity method based on Brouwer’s “invariance of a domain” theorem
(cf. [7, Ch. 5, Sec. 6], see also [4]). Since F ′ is continuous and injective, Brouwer’s theorem
implies that F ′ maps EL′ homeomorphically onto an open subset of EB. Since the image
F(EL) clearly equals the image F ′(EL′), we conclude that F(EL) is an open subset of EB.
Since EB is connected as explained above, to prove that F is surjective it suffices to show
that the image F(EL) is closed in EB.
We first note that a Blaschke product B of degree n is an n-to-1 branched covering of

D by itself. Thus, by the Riemann-Hurwitz formula as in the proof of Proposition 2.1, B
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has n−1 critical points (counted with multiplicity) in D. (This can also be easily seen by
the argument principle, computing the change in argument of B′(z) as z traverses T by
noting that B(z) circles n times around T as z traverses T once.) For a Blaschke product
B of the form (3.11), the critical values c1, . . . , cn−1 are of course obtained by solving the
equation B′(z) = 0 and, hence, the critical values depend continuously (as sets) on the
roots b1, . . . , bn−1. Consequently, the critical values w1, . . . , wn−1 ∈ D depend continuously
on b1, . . . , bn−1. Also, if B = P ◦ Φ for some polynomial P and conformal mapping Φ,
then clearly the critical values of B and P are the same. Moreover, the critical values of
any two Blaschke products in the same equivalence class in EB are the same. It follows
that the critical values of a polynomial corresponding to e ∈ EL and any representative
of F(e) are the same.
Now, let {fk} be a sequence in F(EL) converging to f0 ∈ EB. We will show that

f0 = F(e0) for some e0 ∈ EL, which will complete the proof. Let ek := F−1(fk) ∈ EL
and let Pk denote the corresponding polynomials under the identification (3.7). In what
follows, we shall abuse the notation and not distinguish between an element e of coefficients
and its corresponding polynomial P . Now, let B0 be a Blaschke product in the equivalence

class f0 and let w
(0)
1 , . . . , w

(0)
n−1 denote the critical values (counted with multiplicity) of

B(z). Note that the critical values are independent of the choice of B0. Let us choose

B0 ∈ B. Similarly, let w
(k)
1 , . . . , w

(k)
n−1 denote the critical values of some (any) choice of

Blaschke product Bk ∈ B in the equivalence class fk. Since the map π : B → EB is an
n-to-1 branched covering (each equivalence class in EB contains at most, and generically,
n distinct Blaschke products of the form (3.11) as mentioned above), we may choose the
Bk ∈ B such that Bk → B0 in B. Since the critical values depend continuously on the

roots of the Blaschke product, we can order the critical values w
(k)
1 , . . . , w

(k)
n−1 of Bk in such

a way that w
(k)
j → w

(0)
j as k → ∞ for each j. (For instance, for each k we can choose an

ordering that minimizes the sum of the distances |w(k)
j − w

(0)
j |.)

Now, recall the n-to-1 holomorphic mapping Λ: ẼL → EL, where ẼL denote the poly-
nomials of the form (3.8) whose critical values all belong to D. Note that each polynomial
P̃ (z) of the form (3.8) is uniquely determined by the conditions that P̃ (0) = 0 and P̃ ′(z)
is monic. The map

(3.13) (ζ1, . . . , ζn−1) 7→ P̃ (z) :=

∫ z

0

(
n−1∏
k=1

(z − ζk)

)
dz

is an (n − 1)!-to-1 holomorphic map of Cn−1 onto the space of polynomials of the form
(3.8). By Theorem 1.2 in [2], the map sending the critical points of P̃ given by (3.13) to
its critical values, i.e.

(3.14) Ψ(ζ1, . . . , ζn−1) := (P̃ (ζ1), . . . , P̃ (ζn−1)),
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is a finite nn−1-to-1 holomorphic mapping. Choose P̃k ∈ ẼL such that Λ(P̃k) = Pk. Since

(F ◦ Λ)(P̃k) = F(Pk) = fk, it follows that the critical values of P̃k are w
(k)
1 , . . . , w

(k)
n−1.

Thus, we can choose a sequence ζk = (ζ
(k)
1 , . . . , ζ

(k)
n−1) ∈ Cn−1 such that P̃k is given by

the map in (3.13) and Ψ(ζk) = wk := (w
(k)
1 , . . . , w

(k)
n−1). Now, choose ζ0 ∈ Cn−1 such that

Ψ(ζ0) = w0 := (w
(0)
1 , . . . , w

(0)
n−1). Since wk → w0 as k → ∞, it follows that the the inverse

images Ψ−1(wk) converge to Ψ−1(w0) as sets. Since ζk ∈ Ψ−1(wk), ζ0 ∈ Ψ−1(w0), and any
Ψ−1(w) (in particular, Ψ−1(w0)) contains at most nn−1 distinct preimages, it follows from
the pigeon hole principle that there is a subsequence ζkj that converges to ζ0. If we now

let P̃0 denote the image of ζ0 in ẼL under the map (3.13), then P̃kj → P̃0. Thus, if we

denote by P0 = Λ(P̃0) ∈ EL, then F(Pk) = (F ◦ Λ)(P̃kj) → F(P0) as j → ∞. Also, we
have F(Pk) → e0 and, hence, F(P0) = e0 proving that e0 belongs to the image of F . We
conclude that the image is closed. Since the image is also open and EB is connected, we
conclude that F is surjective, which completes the proof. �

We would like to revisit the main idea in the proof above of the existence of a lemniscate
with a prescribed nth root of a Blaschke product B as its fingerprint. It is well known,
and easily seen by the Riemann-Hurwitz formula or by noting that B′(z)dz changes its
argument by 2πn as z traverses the unit circle, that B has n−1 critical points z1, . . . , zn−1

counted with multiplicities inside the unit disk. Let wj := B(zj), for j = 1, . . . , n − 1,
denote the critical values of B in D. The main idea in the existence proof above is to
look for a candidate of a lemniscate whose fingerprint could be k = n

√
B among those

given by Γ := {z ∈ C : |P (z)| = 1}, where the P (z) are polynomials of degree n whose
critical values are w1, . . . , wn−1 ∈ D. We know that the number of equivalence classes
of such lemniscates is finite and, by the uniqueness part in Theorem 3.1 already proved,
the map sending these equivalence classes to their fingerprints k is injective. Thus, if
we could show that the number of equivalence classes of Blaschke products with a given
set of critical values w1, . . . , wn−1 ∈ D is the same as (or at least does not exceed) the
number of equivalence classes of polynomials with this set of critical values, then the
map would be a bijection, which would complete the proof of the existence. We have,
however, been unable to find a direct proof of this statement and unable to find it in
the existing literature. To circumvent this obstacle, we instead use Koebe’s continuity
method as described in the proof above. As a biproduct of this alternative completetion
of the proof, we are able a posteriori to get an accurate count of the number of equivalence
class of Blaschke products with a given set of critical values in the following way.
We shall use the notation introduced in the proof of Theorem 3.1. If w1, . . . , wn−1 are

values in D, not necessarily distinct, then by Theorem 1.2 in [2] there are nn−1 points

ζ1, ζ2, . . . , ζn
n−1 ∈ Cn−1, repeated according to multiplicity, such that Ψ(ζj) = w :=

(w1, . . . , wn−1), where Ψ is defined by (3.14). Hence, if we disregard the ordering of
the components of ζj = (ζj1 , . . . , ζ

j
n−1) and w = (w1, . . . , wn−1), we conclude that there
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are nn−1 polynomials P̃ of the form (3.8) in ẼL, again counted with multiplicity, whose

critical values are w1, . . . , wn−1. Since the map Λ: ẼL → EL is n-to-1, there are nn−2

polynomials in EL with critical values w1, . . . , wn−1. Next, we observe that when n = 2,
the set of equivalence classes EL′ introduced in the proof above coincides with EL, but
for n ≥ 3 there are, generically, n elements of EL in each equivalence class. Thus, the
map F : EL → EB is 1-to-1 when n = 2, but n-to-1 for n ≥ 3. We therefore obtain the
following result, which seems to be of independent interest.

Corollary 3.2. For n ≥ 3 and any collection w1, . . . , wn−1 of values in D, there are nn−3

equivalence classes (counted with multiplicities) of Blaschke products in EB whose critical
values (in D) are w1, . . . , wn−1. For n = 2, there is one equivalence class.

4. Further remarks

In this section, we collect some further remarks and observations regarding lemniscates
and their fingerprints. We begin by proving the following rigidity results, which can be
used to give an alternative proof of the uniqueness part (in the context of lemniscates) in
Theorem 3.1 but also seems to be of independent interest.

Proposition 4.1. Let Ω
(1)
− , Ω

(2)
− be two domains bounded by proper lemniscates of degree

n and defined by the equations |P (z)| < 1, |Q(z)| < 1, respectively, where P , Q are of

the polynomials of degree n. Let
{
a
(1)
j

}n

j=1
,
{
a
(2)
j

}n

j=1
denote the respective nodes of the

lemniscates, i.e., the roots of P and Q. If F : Ω
(2)
− → Ω

(1)
− is a conformal map that maps

the nodes of Ω
(2)
− onto the nodes of Ω

(1)
− , then F is an affine automorphism F (w) = aw+b

with a, b ∈ C.

Remark 4.2. Of course, we assume that if some nodes a
(2)
j have non-trivial multiplicities,

then F preserves multiplicities as well.

Proof of Proposition 4.1. Consider h(w) := Q(w)/P (F (w)) defined in Ω
(2)
− . By our hy-

pothesis, h is analytic and non-vanishing in Ω
(2)
− (all the zeros and poles are cancelled by

the zeros of Q) and |h| = 1 on the lemniscate Γ2 := ∂Ω
(2)
− . Moreover, since we can say

the same about 1/h, we conclude that h is a unimodular constant. Hence, we have

(4.1) P (F (w)) = cQ(w), |c| = 1,

in Ω
(2)
− . Equation (4.1) implies that F is an algebraic function and can therefore be

continued analytically, maintaining equation (4.1), along any curve in the Riemann sphere

Ĉ avoiding a finite number of points b1, . . . , bm ∈ Ĉ. Since both P and Q have poles
of order n at ∞, the algebraic function F can only take the value ∞ at ∞ and any
continuation of F will have a simple pole there. Thus, if we allow the continuation of
F to have poles (i.e. we continue F as a meromorphic function or, equivalently, as an
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analytic map into Ĉ), then the singularities b1, . . . , bm of F are all branch points in C at
which a continuation of F takes on finite values. Thus, if we continue F along a curve

C from inside Ω
(2)
− , ending at one of the branch points b = bj, for some j = 1, . . . ,m,

(but avoiding the others) and F develops a singularity at b, then the value ζ := F (b) ∈ C
must be a critical point of P . (Otherwise, P would be locally biholomorphic near ζ and F
would not be singular there.) If we can show that there are no true branch points, i.e. the
continuation of F along C to b (for all branch points b and all curves C as described above)

is analytic at b, then F extends as a holomorphic map of Ĉ onto itself sending ∞ to itself
with multiplicity one and no other poles, and is therefore of the form F (w) = aw + b,
which would complete the proof of Proposition 4.1. Since F is already analytic in a

neighborhood of Ω
(2)
− , it suffices to show that there are no branch points in C \ Ω

(2)
− , so

there is no loss of generality in assuming that b ∈ C \ Ω
(2)
− . Thus, assume, in order to

reach a contradiction, that the continuation of F along C is singular at b and that this
continuation satisfies ζ = F (b). Then, as mentioned above, ζ is a critical point of P and,

hence by Proposition 2.1, we have ζ ∈ Ω
(1)
− . This implies that |P (F (b))| = |P (ζ)| < 1,

which implies that |Q(b)| < 1. But then b ∈ Ω
(2)
− , which is a contradiction since b ̸∈ Ω

(2)
−

by assumption. This completes the proof of Proposition 4.1. �

We single out here the following observation, interesting in its own right, that was used
in the proof of Proposition 4.1 above.

Proposition 4.3. Let P be a polynomial of degree n and F an algebraic function satisfying

(4.2) P (F (w)) = Q(w),

where Q is a polynomial. Let Ω− := {z ∈ C : |P (z)| < 1} and assume that Ω− is connected
(i.e. {z ∈ C : |P (z)| < 1} is a proper lemniscate of degree n).Then, all finite branch points
of F must lie inside {z : |Q(w)| < 1}.

Proof. If b ∈ C is a branch point of F and there is a branch of F that is singular at b,
then the value ζ = F (b) of this branch is not ∞ (since Q(b) ̸= ∞) and, as noted in the
proof of Proposition 4.1 above, ζ is a critical point of P . By Proposition 2.1, we have
ζ ∈ Ω− and, hence, |Q(b)| = |P (F (b))| = |P (ζ)| < 1, which completes the proof. �

We end this paper with two remarks. (i) Since we have not been able, so far, to
find a constructive and simple way of identifying a lemniscate Γ with a given fingerprint
k = n

√
B, our approach does seem to be inferior to that pioneered by Mumford and Sharon

[11]. However, taking into account the extremely simple form of fingerprints of lemnis-

cates ( n
√
B, where B is a Blaschke product of degree n), perhaps, some way of efficiently

combining the two approaches may be useful. More precisely: 1) Approximate a given

fingerprint k : T → T by n
√
B (as can be done arbitrarily well by Theorem 2.3). 2) Find

an approximate shape of the lemniscate Γ corresponding to n
√
B by using the technique
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from [11] based on Schwarz–Christoffel integrals. 3) Approximate the shape obtained in
[11] by a lemniscate as in the proof of Hilbert’s theorem which is quite constructive —
cf. [15]. Hopefully, in the future, some numerical experiments carried out along these
lines will support our envisioning of the (simple) fingerprints of lemniscates as natural
“coordinates” in the space of shapes.
(ii) As a final remark in this paper, we would like to point out a direction of further

study. If R(z) is a rational function of degree n, then we may consider the rational

lemniscate Γ := {z ∈ Ĉ : |R(z)| = 1}. Under the assumption that the interior Ω− := {z ∈
Ĉ : |R(z)| < 1} is connected and simply connected (and there are no singularities on Γ),
the rational lemniscate Γ is a shape and we can consider its fingerprint k : T → T. If
Φ± denote the corresponding Riemann maps D± → Ω± as above (where we assume, say,
that ∞ ∈ Ω+, since otherwise the strategy of defining the fingerprint would need to be
slightly modified), then the fingerprint would satisfy the functional equation Φ+ ◦k = Φ−.
Composing with R to the left on both sides, we obtain an equation of the form A◦k = B,
where A = R ◦ Φ+ and B = R ◦ Φ− are Blaschke products of degree n. In the case of
polynomial lemniscates considered in this paper, we have A(z) = zn. We suspect that all
diffeomorphisms k : T → T that arise from the algebraic equation A ◦ k = B, where A
and B are Blaschke products of degree n, are fingerprints of rational lemniscates. A first
obstacle in this study would be to establish an analytic criterion for when the rational
lemniscate Γ = {z ∈ Ĉ : |R(z)| = 1} has a connected and simply connected interior Ω−.
In the polynomial case, the criterion for Ω− to be connected and simply connected is
that the n − 1 finite critical values of the polynomial P lie in the unit disk (Proposition
2.1). In the case of a more general rational lemniscate, it is easily seen that this is also
a necessary but not a sufficient condition. However, one can show that if R has n − 1
critical values in D and Ω− is connected or every component of Ω− is simply connected,
then Ω− is both connected and simply connected. The authors hope to return to the case
of rational lemniscates in a future paper.
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