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Normal matrices → Coulomb gas

The eigenvalues of n× n normal matrices with the probability
distribution

Prob(M)dM =
1
Z

e−N Tr[MM†+V (M)+V (M)†]dM,

distributes by the probability density

P (λ1, ..., λn) =
1
Z

∣∣∣ n∏
j<k

(λj − λk)
∣∣∣2 exp

−N n∑
j=1

Q(λj)

 ,

where the potential is given by

Q(z) = |z|2 + V (z) + V (z),

i.e. Gaussian plus harmonic function when V is holomorphic.

Eigenvalues of random normal matrices are Coulomb gas in
2-dimension.
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Continuum limit of Coulomb gas: n, N →∞
Define t = limn,N→∞ n/N .

For real analytic Q,

1
n

∑
j

δ(z − λj)
weak−→ ρ(z) +

1
n
ρ1/2(z) + (fluctuation)

where [Wiegmann-Zabrodin, Ameur-Hedenmalm-Makarov, ...]

ρ =
∆Q
4πt

1S ,

ρ1/2 = 2−β
8πβ ∆((log ∆Q)H+1S) = 0.

In our case, β = 2 and ∆Q = 4.

The density is asymptotically constant on S, and Area(S) = πt.

S is determined by the support of σ that minimizes∫
C
Q(w)σ(w)d2w − n

N

∫∫
C2
σ(z)σ(w) log |z − w|d2z d2w.
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Correspondence to Hele-Shaw flow: S is the domain of non-viscous
fluid in ideal Hele-Shaw flow when t is the Hele-Shaw time.
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Orthogonal polynomials on C
(Joint) Probability densities are given by (for k ≤ n)

P (λ1, ..., λk) ∝ det
(
Kn(λi, λj)e−

N
2 (Q(λi)+Q(λj))

)k
i,j=1

,

where the (reproducing) kernel Kn is defined by

Kn(z, w) =
n−1∑
j=0

pj(z)pj(w)
hj

,

and pj = xj + ... is a polynomial of degree j defined by

hjδij =
∫

C
pi(z) pj(z) e−NQ(z)dA(z).

Therefore, the kernel Kn is the most wanted in our analysis.
For example, the density is given by

ρn(z) :=
1
N
Kn(z, z) e−NQ(z).
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Quantized Hele-Shaw flow

Hele-Shaw time t is quantized by n/N .
So it is natural to expect

N(ρn+1(z)− ρn(z)) =
|pn(z)|2

hn
e−NQ(z) ∼ 1δS

where δS is the growing part of S for a small time interval.

Theorem [AHM]: |pn(z)|2e−NQ(z)dA(z) converges to the harmonic
measure at ∞ with respect to C \ S.
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The simplest case: Ginibre ensemble

When V (z) = 0 the orthogonal polynomials are pk(z) = zk.
The kernel is explicitly given in terms of Gamma functions.

[Left] Kn(z, z) e−NQ(z) for n = N = 40.

[Right] |pn(z)|2 e−NQ(z) for n = N = 20.
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Goal (and some implications)

Taking V (z) = −c log(z − a) where c > 0, we will obtain the pointwise
limit of pn(z) and Kn(z, z) using Riemann-Hilbert method (DKMVZ
’99).

I There is a topological transition.
I Similar technique may apply for

any finite logarithmic singularities.
I RH method can, if necessary,

give us an arbitrary order
of accuracy in large N expansion.

I RH method effectively handles the
singular region (for instance, where
the merging transition occurs).

(Asymptotics of pn(z): Elbau-Felder)
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Universality

I The kernel in the bulk is heat kernel.
I The kernel at the boundary is written in terms of erf.
I Merging transition is described, in the classical limit, by scaling

solution such that y2 ∼ x2(x2 + t).
I In the merging transition, orthogonal polynomial (and quantum

Hele-Shaw) is given by PII parametrix (conjectured by
Bettelheim-Lee-Wiegmann, Its-Bleher in 1-matrix model)

I The spectral edges in Hermitian matrix model correspond to the
cusp-singularities.

(4n+ 1, 2) cusp ⇔ density that vanishes as ∼ x2n+1/2 .
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And the polynomials look like...

The plots of |pn(z)|2 e−NQ(z) for various n.

— The roots (red dots) are on 1 dimensional curve.
— The peak is on the growing part of the boundary.
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The density looks like...

(Summing up to 12th polynomials...)
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1st step: Area integral into Contour integral

lim
R→∞

Z
|z|<R

pj(z)(z − a)k|z − a|2Nce−Nzzd2z

= lim
R→∞

Z
|z|<R

pj(z)(z − a)Nc
d

dz

„Z z

a

(s− a)Nc+ke−Nzsds

«
dz ∧ dz

2i

= lim
R→∞

I
|z|=R

pj(z)(z − a)Nc
„Z z

a

(s− a)Nc+ke−Nzsds

«
dz

2i

⇒ lim
R→∞

Γ(Nc+ k + 1)

2i

I
|z|=R

pj(z)(z − a)Nc

(Nz)Nc+k+1
e−Nazdz.

In the last line, limR→∞ can be dropped.

0 =

I
pj(z)

(z − a)Nce−Naz

zNc+j
zj−k−1dz for k = 0, 1, ..., j − 1.

=

I
pj(z)wn(z)zsdz for s = 0, 1, ..., j − 1, wj(z) =

(z − a)Nce−Naz

zNc+j
.

pj(z) is the orthogonal polynomial with respect to wj(z)dz !
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Riemann-Hilbert problem

Y (z) =

 pn(z)
1

2πi

∮
pn(z′)
z′ − z

wn(z′)dz′

−2πiQn−1(z) −
∮
Qn−1(z′)
z′ − z

wn(z′)dz′

 .

Here Qn−1(z) is the orthogonal polynomial of degree n− 1 with
respect to the measure wn(z)dz.

Then Y satisfies the Riemann-Hilbert problem:

Y (z) is holomorphic in C \ Γ.

Y+(z) = Y−(z)
(

1 wn(z)
0 1

)
, z ∈ Γ .

Y (z) =
(
I +O

(
1
z

))
znσ3 z →∞ .

Above, Γ is the contour that goes around the origin.
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Eigenvalue support: S
... can be defined by the following step.

Write a general rational function that maps ∞ and α to ∞.

f(v) := ρ v +
κ

v − α
+ z0.

S(v) := f(1/v).

Require that
I S(v) ∼ c/(f(v)− a) as v → 1/α,
I S(v)→ (c+ t)/f(v) as v →∞.

This determines ρ, κ, α, z0.

Now S is given by f(∂D).

The “inverse” function f−1 maps C \ S to the outside of unit disk.
⇒ log |f−1(z)| = G(∞, z). (f−1 can be extended inside S.)
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RH method gives...

The first column of Y : (in terms of geometric quantity)

pn(z) =
√
ρ (f−1(z))′ eng(z)

(
1 +O

(
1
n

))
,

Qn−1(z) = cn

√
ρ (f−1(z))′

ρ(f−1(z)− α)
eng(z)

(
1 +O

(
1
n

))
.

I Re g(z) is the logarithmic potential of 1S , i.e.

g(z) :=
1
πt

∫
1S

log(z − ζ)dA(ζ).

(g can be analytically extended inside S.)
I |(f−1(z))′| gives the harmonic measure.
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1S was defined by a potential problem such that

Q(z)− 2 tRe g(z) = |z|2 + 2 Re
(
− c log(z − a)− t g(z)

)
gets minimized on S (or on ∂S).

⇒ |pn(z)|2e−nQ(z) = ρ|(f−1(z))′|e−n(Q(z)−2 tRe g(z)
(
1 +O

(
n−1

))
is peaked on ∂S and the line density proportional to the harmonic

measure.
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Zero locus and S (orange dotted line).

⇒ At the edge of the zero locus, special functions are used to describe
the strong asymptotics (Airy function, Painlevé II function, Parabolic
cylinder function).
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Better approximation

— Parabolic cylinder function.
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Christoffel-Darboux identity

When applying “Riemann-Hilbert technique” to 1 matrix model, one
obtains the asymptotic expansion of pj(z)’s and obtains the kernel by
using the identity

n−1∑
j=0

pj(z)pj(w)
hj

∝ pn(z)pn−1(w)− pn(w)pn−1(z)
z − w

.

This relates the large sum into a few highest degree polynomials.
In normal matrix model (∈ 2 matrix model) CD identity exists but
does not relate to Kn(z, w) directly.
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CD identity for the bi-orthogonal polynomial

Let us consider the following (normalized) BOP with polynomial
potentials V and W . (Our case: W (w)→ V (w);w → z)

δnm =
∫∫

dz dw pn(z)qm(w)e−N
(
zw+V (z)+W (w)

)
.

Define p̃m(z) := pm(z)e−NV (z); q̃m(w) := qm(w)e−NW (w).

Differentiating inside the integral,

0 =
∫∫

dz dw
d

Ndw
(
p̃n(z)q̃m(w)e−Nzw

)
=
∫∫

p̃n(z)
dq̃m(w)
Ndw

e−Nzw −
∫∫

p̃n(z)z q̃m(w)e−Nzw.
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I Obviously, z p̃n(z) is spanned by {p̃0(z), ..., p̃n+1(z)}.
I d

dz q̃m(z) is a linear combination of {q̃m+d(z), ..., q̃0(z)} where d is
the degree of W ′(z).
(This is not true if W ′(w) is not polynomial.)
(See, “Biorthogonal polynomials for two-matrix models with semiclassical potentials” by
Bertola)

We consider the truncated vectors:

p̃n(z) := (p̃n−1(z), ..., p̃0(z))T ,

q̃n(w) := (q̃n−1(w), ..., q̃0(w))T .

The kernel is given by q̃n(w)T p̃n(z).
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We have,

z p̃n(z) =
(∫∫

dζ dw e−Nζwp̃n(ζ) ζ q̃n(w)T
)

p̃n(z)+an
(
p̃n(z), 0, ..., 0

)T
where the red part is the projection operation into {p̃0, ..., p̃n−1}

(The big braket is an n× n matrix).
Similarly,

d

Ndw
eqn(w)T = eqn(w)T

„ZZ
dz dζe−Nzζepn(z)

deqn(ζ)T

Ndζ

«
+(mostly zero vector).

Note that the same n× n matrix appears.

eqn(w)T × (1st eq.)− (2nd eq.)× epn(z) gives„
z − d

Ndw

« eqn(w)T epn(z) = −eNzw

N

d

dw

“
e−Nzweqn(w)T epn(z)

”
= (involving a few highest degree polynomials).
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Let’s work... Remind wn(z) = (z − a)Nce−Naz/zNc+n

We have defined Qn−1(z) = cnz
n−1 + ... such thatI

Qn−1(z)wn(z)zkdz = δk,n−1 for k = 0, ..., n− 1.

We define (pn(z) = zn + bnz
n−1 + ... is monic polynomial)

ehj :=

I
pn(z)pn(z)wn(z)dz.

For k ≤ n− 1, we haveZ `
pn(z)− zpn−1(z)

´
wn(z)zkdz

=

Z
pn(z)wn(z)zkdz −

Z
pn−1(z)wn−1(z)zkdz = −ehn−1δk,n−1

Therefore, we have cn = (bn−1 − bn)/ehn−1 and

Qn−1(z) =
z pn−1(z)− pn(z)ehn−1

.
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Similarly, consider the following polynomial of degree n− 1 for
k ≤ n− 1:Z

wn(z)zk
`
pn(z)− c−1

n+1Qn(z)
´

dz

=

Z
wn(z)zkpn(z)dz − c−1

n+1

Z
wn(z)zkQn(z)dz

=
−1

cn+1
ehn
Z
wn(z)zk (z pn(z)− pn+1(z)) dz

=
−1

cn+1
ehn
„Z

wn(z)zk+1pn(z)dz −
Z
wn+1(z)zk+1pn+1(z)dz

«
= −c−1

n+1δk,n−1

Therefore,

pn(z)− c−1
n+1Qn(z) = −c−1

n+1Qn−1(z).

Combined with the previous equation ⇒ Three-term recurrence.
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Differential relation

Note that d
dz p̃n(z) is not a linear combination of {p̃j}, but

1
N

d
dz

(
p̃n(z)− pn(a)

pn+1(a)
p̃n+1(z)

)
is.

Even more, this is orthogonal to {p̃0, ..., p̃n−2} with respect to the
area integral, hence

1

N

d

dz

„epn(z)− pn(a)

pn+1(a)
epn+1(z)

«
= ? epn−1(z)− pn(a)

pn+1(a)

„
c+

n+ 1

N

« epn(z).

? is obtained after some algebra to be

? =
Pn(a)

Pn−1(a)

cn
cn+1

.
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Kernel

e−Nzw
„
z − 1

N

d

dw

« n−1X
j=0

epj(w)epj(z)
hj

= − 1

N

d

dw

 
e−Nzw

n−1X
j=0

epj(w)epj(z)
hj

!

=
e−Nzw

cn+1hn

„
− 1

N

d

dw
epn(w) eQn−1(z) + ? epn−1(w) eQn(z)

«
.

The kernel is obtained by the antiderivative. Especially the density

ρn(z) = e−N|z|
2
Kn(z, z) can be obtained by integrating

∂zρn(z) =
e−N|z|

2

cn+1hn

„
− 1

N
∂zepn(z) eQn−1(z) + ? epn−1(z) eQn(z)

«
.

This quantity converges to “∂z1S”.
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