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NORMAL MATRICES — COULOMB GAS

The eigenvalues of n x n normal matrices with the probability
distribution

Prob(M)dM = ie—NTr[MMT—&-V(M)-&-V(M)T]dM
Z Y

distributes by the probability density
L 2
P,y \n) = g‘ H(Aj - )\k)‘ exp | =N IQO) |-
J<k j=1
where the potential is given by

Qz) = 2> + V(2) + V(2),

i.e. Gaussian plus harmonic function when V is holomorphic.

Eigenvalues of random normal matrices are Coulomb gas in
2-dimension.

N



CONTINUUM LIMIT OF COULOMB GAS: n, N — 00
Define ¢ = lim,, y—o0o n/N.

For real analytic @,
1 weak 1 .
- Z 0(z—Nj) — p(z) + Epl/g(z) + (fluctuation)
J

where [Wiegmann-Zabrodin, Ameur-Hedenmalm-Makarov, ...]

AQ
4wt
P12 = =0.

Sa

In our case, f =2 and AQ = 4.
The density is asymptotically constant on S, and Area(S) = t.

S is determined by the support of ¢ that minimizes

/(CQ(w)U(w w— —//(C2 w)log |z — w|d?z d*w.



Correspondence to Hele-Shaw flow: S is the domain of non-viscous
fluid in ideal Hele-Shaw flow when ¢ is the Hele-Shaw time.



ORTHOGONAL POLYNOMIALS ON C
(Joint) Probability densities are given by (for k < n)
k
P,y A o det( (s Aj)e 3¢ QW*QW))) :

ij=1

where the (reproducing) kernel K, is defined by
n—1

-y p;(2)p;(w)

: hj ’
7=0

and p; = 2/ + ... is a polynomial of degree j defined by

hisi; = /@ pi(2) Dy () e N dA(2).

Therefore, the kernel K,, is the most wanted in our analysis.
For example, the density is given by



QUANTIZED HELE-SHAW FLOW

Hele-Shaw time ¢ is quantized by n/N.
So it is natural to expect

2
n(2)? _Noe
N(pn+1(2) = pn(2)) = W}LAQ NQE) 156
n

where 05 is the growing part of S for a small time interval.

Theorem [AHM]: |p,(2)|?e"NQ*)dA(z) converges to the harmonic
measure at oo with respect to C\ S.



THE SIMPLEST CASE: GGINIBRE ENSEMBLE

When V(z) = 0 the orthogonal polynomials are py(z) = z*.
The kernel is explicitly given in terms of Gamma functions.

A
RETALATR,
&
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[Left] K, (z,2)e N9 for n = N = 40.

[Right] [p,(2)|?e " N9®) for n = N = 20.
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GOAL (AND SOME IMPLICATIONS)

Taking V(z) = —clog(z — a) where ¢ > 0, we will obtain the pointwise
limit of p,(z) and K, (z, z) using Riemann-Hilbert method (DKMV?Z
99).

» There is a topological transition.

» Similar technique may apply for
any finite logarithmic singularities.
» RH method can, if necessary,
give us an arbitrary order
of accuracy in large N expansion.

» RH method effectively handles the
singular region (for instance, where
the merging transition occurs).

(Asymptotics of p,(z): Elbau-Felder)



UNIVERSALITY

» The kernel in the bulk is heat kernel.
» The kernel at the boundary is written in terms of erf.

» Merging transition is described, in the classical limit, by scaling
solution such that y? ~ x2(2? +1t).

» In the merging transition, orthogonal polynomial (and quantum
Hele-Shaw) is given by PII parametrix (conjectured by
Bettelheim-Lee-Wiegmann, Its-Bleher in 1-matrix model)

» The spectral edges in Hermitian matrix model correspond to the
cusp-singularities.

’ (4n 4 1,2) cusp ‘ & | density that vanishes as ~ 22" +1/2 |,




AND THE POLYNOMIALS LOOK LIKE...

.0
b 00

The plots of |p,(2)|> e NQE) for various n.

— The roots (red dots) are on 1 dimensional curve.
— The peak is on the growing part of the boundary.
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THE DENSITY LOOKS LIKE...

(Summing up to 12th polynomials...)
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1ST STEP: AREA INTEGRAL INTO CONTOUR INTEGRAL

lim pi(2)(Z — a)f|z — a|*N e NVFd%2
R—o0 |2|<R
. . d z etk —Nzs, ) dZAdz
_B}Lngo ‘ZKRpj(z)(z—a)N P (/ﬂ (s —a)NtFe N ds) R

= Jim pi(2)(z—a)™* (/j(s - a)NC+ke_stds> dz

R—o0 |z|=R 2i

L TWNetk+1) [ p(A)E- 0Ny
:‘I%E&T?‘ilﬂ T(NoNerE ¢

In the last line, limg_, o can be dropped.

_ Nc_ —Naz
0= ?{pj(z)(zj)N—Hi/:F"'fldz for k=0,1,....,5 — 1.

(Z _ a)NcefNaz

= %pj(z)wn(z)z”dz fors=0,1,....,7 -1, w;(z)= NeTs

p;j(2) is the orthogonal polynomial with respect to w;(z)dz!



RIEMANN-HILBERT PROBLEM

z 1 pn(Z/)w 2Nd
Y(z) = Pn(2) 271'1'?{2’—2 n(2)

2riQua(s) — ¢ L=t

2zl —z

Here @,,—1(2) is the orthogonal polynomial of degree n — 1 with
respect to the measure w,, (z)dz.

Then Y satisfies the Riemann-Hilbert problem:
Y (z) is holomorphic in C\ T

Yi(2) = Y_(2) (é wnl(z)> , zeT.

vr= (10 (1)) <.

Above, I is the contour that goes around the origin.



EIGENVALUE SUPPORT: S

.. CAN BE DEFINED BY THE FOLLOWING STEP.

Write a general rational function that maps co and « to oco.

f(w) :PU"‘#"‘ZU
S() = f(1/v).
Require that
> S(v) ~ ¢/(f(v) — a) as v — 1/a,
> S(v) — (c+1t)/f(v) as v — 0.

This determines p, K, «, zg.

Now S is given by f(0D).

The “inverse” function f~! maps C\ S to the outside of unit disk.

= log|f~1(2)| = G(c0,2). (f~! can be extended inside S.)



RH METHOD GIVES...

The first column of ¥: (in terms of geometric quantity)
_ L)y ona(2) 1
p(e) = Vo (Y e (1+0( ),

» Reg(z) is the logarithmic potential of 1g, i.e.

o() = — / log(z — ¢)dA(C).

Tt

(g can be analytically extended inside S.)

» |(f7%(2))'| gives the harmonic measure.



15 was defined by a potential problem such that
Q(z) — 2tReg(z) = |2|* +2 Re( —clog(z —a) — tg(z))

gets minimized on S (or on 95).

= [pa(2)[PeT 9 = p|(f 71 (2)) | AP ERED (140 (7))

is peaked on 0SS and the line density proportional to the harmonic
measure.
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ZERO LOCUS AND S (ORANGE DOTTED LINE).

= At the edge of the zero locus, special functions are used to describe
the strong asymptotics (Airy function, Painlevé II function, Parabolic
cylinder function).

AP N G4
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BETTER APPROXIMATION

— Parabolic cylinder function.



CHRISTOFFEL-DARBOUX IDENTITY

When applying “Riemann-Hilbert technique” to 1 matrix model, one
obtains the asymptotic expansion of p;(z)’s and obtains the kernel by
using the identity

§ 20 pa(Ipna(w) —paw)pa s ()

— h; z—w

7=0
This relates the large sum into a few highest degree polynomials.
In normal matrix model (€ 2 matrix model) CD identity exists but
does not relate to K, (z,w) directly.



CD IDENTITY FOR THE BI-ORTHOGONAL POLYNOMIAL
Let us consider the following (normalized) BOP with polynomial
potentials V and W. (Our case: W (w) — V(W);w — %)

Opm = // dz dw p(2) g, (w) =N (zwV ()4 <“>)
Define p,,(2) := pm(z)eiNV(z% gm(w) = Qm(w)eiNW(w)'

Differentiating inside the integral,

0—//dzdw7 o (2)Gom (w)eV2)
// dqm o Nzw _ //ﬁn(z)z Gom ()6~ N7




» Obviously, z p,,(z) is spanned by {po(2), ..., Dnt1(2)}.

» 4G.(2) is a linear combination of {Gm+a(2), ..., do(2)} where d is
the degree of W'(z).

(This is not true if W/ (w) is not polynomial.)
(See, “Biorthogonal polynomials for two-matrix models with semiclassical potentials” by
Bertola)

We consider the truncated vectors:

ﬁn(z) = (571—1(2)3 "'aﬁﬂ(z))Ta
An(w) = (Gu_1(w), ..., o(w))*.

The kernel is given by q, (w)!p,(2).



We have,
2Pn(z (// d¢ dweNew Pn(Q) Can(w) >5"(2)4’an(§n(z),0,,,_7())T

where the red part is the projection operation into {po, ..., Dn—1}
(The big braket is an n X n matrix).
Similarly,

~ T
ﬁan( ) = qn(w) <// dzd¢e” NZC"”,( ) d%:f((i? >+(most1y zero vector).
Note that the same n x n matrix appears.

dn(w)T x (Ist eq.) — (2nd eq.) x Pn(2) gives

(- i) @@ Ba0) = e (0B 2)

= (involving a few highest degree polynomials).

N
N}
|



LET’S WORK... Remmp wn(2) = (2 — a)Nee Nz /pNetn
We have defined Q,,_1(2) = ¢,,2"~! + ... such that

f@n_l(z)wn(z)zkdz =0k p_1 for k=0,...,n—1.
We define (pn(z) = 2™ + b, 2" "' 4 ... is monic polynomial)
= f @) ()
For k < n — 1, we have
[ 0n(2) = 2prea(2)) w2124
= [pa@un(@)2%z = [ proa@un 1202 dz = o180

Therefore, we have ¢, = (bp—1 — bn)/ﬁnq and

sy — PG = ().

hnfl




Similarly, consider the following polynomial of degree n — 1 for
k<n-1:

[wn@2 (a(2) = 211Qu(2)
= /wn(z)zkpn(z)dz—c;}rl/wn(z)szn(z)dz

—1
= 0@ pae) — P () s
Cn+1hn
= _1~ (/wn(z)z/"flpn(z)dz—/wn+|(z)z"'flpnﬂ(z)dz)
Cn+1hn
= 767:};151@',71—1

Therefore,

Pu(2) = i 11Qn(2) = —cutr1Qu-i(2): |

Combined with the previous equation = Three-term recurrence.
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DIFFERENTIAL RELATION

Note that £, (2) is not a linear combination of {p;}, but

li~z—pn(a)~ z) | is
v (- 200

Even more, this is orthogonal to {po, ..., Dn—2} with respect to the
area integral, hence

s (0~ G 9) = P = 5 e+ B ) s

* is obtained after some algebra to be

) e

Y= a
(@) cnit”

Pu(a)
Pn 1



KERNEL

T 1 d S 15] — 1 d Nzwn 15]
- (*N?)Z _Ndw< >
—Nzw N
:§n+1hn( ]bdfu ()31 (2 )+*ﬁn,1(w)Qn(z))'

The kernel is obtained by the antiderivative. Especially the density
2
pn(z) = e NFI" K, (2, 2) can be obtained by integrating

—N|z|? .
Dopn(z) = & < 0B (2 )+*ﬁn—1(Z)Qn(E)>.

Cn+1 hn

This quantity converges to “9,1s”.






